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NON-TECHNICAL SUMMARY

The goal of the analysis was to model retail sales data for clothing & accessories stores, given a dataset of
monthly sales data from January 1992 through December 2012. The data set contains 252 observations,
which include clothing and accessory store monthly sales data (in millions), as reported by retailers selected
by a rigorous selection process by the US Government, ensuring sample representivity for the US. (More
detail: http://www.census.gov/retail/mrts/how surveys are collected.html)

The data appears to have an increasing average value over time, which is to be expected given inflation, at
the very least. Additionally, there’s a sharp spike in sales data around the holiday season every year in
December. In order to properly predict future sales data, this increasing mean and sharp spike in December
needs to be removed. A few transformations were made to the data to make it suitable for modeling.
Initially, the log is taken for each datapoint. This will (with later transforms) serve to stabilze the variation in
the data. Next, by taking the change in log value month-to-month (rather than the actual value every
month), we can eliminate the upward trend of the data over time. Finally, if we take the difference between
the current month and a month twelve months out, then the spike in December is accounted for.

The final model fitted to our data takes these transformations into account and fits a model to the dataset
that predicts the values well. Our residuals, or the difference between the actual data point and our
predicted data point, show a relatively consistent pattern across all points in our data; our model does not
favor any set of values in the data. We’ve predicted the sales data for 2013, and in early returns for January
that the government has begun to collect, the value they have reported is within our range of values.

In the chart below, the purple solid line in the first half of the chart are our actual values. The red dotted
line is the predicted value, and the the brown dotted line (the “top” line) is the max prediction and the blue
dotted line (the “bottom” line) is the minimum prediction. Our model follows the trend of the actual 2012

data well, and will ideally follow 2013 beyond January, as well.
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http://www.census.gov/retail/mrts/how_surveys_are_collected.html

TECHNICAL SUMMARY

DATASET

The dataset used for this analysis includes monthly sales data for clothing & accessories stores in the US
from January 1992 through December 2012. There are 252 observations on sales data (in millions), as
reported by retailers selected by a rigorous selection process by the US Government, ensuring sample
representivity for the US. (More detail is available at

http://www.census.gov/retail/mrts/how surveys are collected.html). The variables present in the dataset
are period (month) and value (sales data, in millions).

EXPLORATORY ANALYSIS

Evaluating a plot of values over time, the data shows strong evidence of seasonality, with a sharp jump at
the 12™ month in every year (understood to be a jump for holiday sales). Additionally, there appears to be a
positive trend in the data, as well, with the mean increasing year over year.
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Given the data is not adequate for analysis as-is, several steps are taken to clean and prepare the data for
fitting a time series model:

e Given increasing average, the difference of the data is taken (value minus the first lag). The trend is
gone, but there is still evidence of seasonality. (See Appendix, figure 2)

e Next, the lagl2 difference is taken to account for seasonality. The trend and seasonality are both
gone, but the variance is not constant. (See Appendix, figure 3)

e The log transform is computed on the original data in order to stabilize the variance. Trend and
seasonality are still evident on the log transform. (See Appendix, figure 4)

e The difference is taken to account for the trend. (See Appendix, figure 5)

e Removed seasonality by taking the lag12 difference. Data now shows constant mean and variance,
with no obvious trends or seasonality present. (See Appendix, figure 6)

As noted, taking the log transform, first difference in the data, followed by the 12" difference in the data
removes all evidence of a trend as well as seasonality. The visual representation of this transformed data


http://www.census.gov/retail/mrts/how_surveys_are_collected.html

shows all evidence of seasonality and trend removed, and it also appears to have a constant mean and

variance, as well.
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Visual tests of normality show that the data appears to be normally distributed, and more detailed tests
evaluating normality, skewness, and kurtosis all show our data is normal. (See Appendix, section 1.8 for
detailed tests of normality.)

G.20

/\ G.15 *

0.10 *

0.04

asmene T
-
L
[T

-0.05 4

N 010

= k -0.15

o T T T T T T T T T T T T T T T T T
-0.12 -0.08 -0.06F -0.03 0 Q.03 G.0f o.09 Q.12 015 -3 -2 -1 o 1 2 3
logdiffid Hormal Quantiles

Once the appropriate transformations of the data were identified and the resulting values on which to fit a
time series model were normal, the model fitting process could begin.

MODEL FITTING

Given the type of seasonality seen in the data, the first model used as an attempt to fit the data is the Airline
Model, or a seasonal model. The correlations of the differenced values are analyzed, and assumptions
needed to use the Airline Model appear to be fulfilled: the data is highly correlated at lags 1, 11, 12, and 13.
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All other autocorrelations in the data are zero, or in other words, are not statistically significant from zero.

The first attempt to fit the data is using an additive MA(1, 12, 13) on the differenced data. However, the
residuals show evidence of serial correlations, which means the model is not an adequate fit.

Autocorrelation Check of Residuals

To Lag| Chi-Square DF | Pr= ChiSq Autocorrelations
6 2950 4 =.0001 0101 0.017 0.236 -0.146 0.0%2 0175
12 60.67 10 <0001 0162 0084 0153 -0.201 0144 0.082
18 77.04 16 =.0001 -0.151 0.154 0.016 -0.101 0.064 0.052
24 107.66 22 <.0001 0175 0099 -0.042 -0.111 0228 -0.095
30 143.06 28 =.0001 -0.084 0.104 -0.212 -0.066 0.027 -0.248
36 162.05 34 <0001 0.026 0097 -0171 0.023 0.069 -0.152

42 186.25 40 <.0001 0.149 -0.067 -0.158 0.108 -0.116 -0.085

Additionally, the residuals of this model have a high negative correlation at the 10" lag, which may be
something to incorporate into the final model.

Several models were attempted via trial-and-error. Ultimately, the best fit model using our log transform

variable is an ARIMA(1,2)x(10,12)12, which takes into the first and second difference as well as a 10" and

12" seasonal lag. All coefficients of this model are significant (values are significantly different from zero),
which means all parameters used in the model are necessary and fit our dataset appropriately.

Maximum Likelihood Estimatior
Approx
Parameter | Estimate Standard Error tValue] Pr = |t| [Lag
MA1,1 0.16051 0.06596 243 0.0150Q 10
MA2,1 0.47026 0.06215 7.57) <.0001Q 12
AR1,1 -0.72471 0.06066 | -11.95 <0001 1
AR1,2 -0.40097 0.06020 -6.660 =.0001 2

The final model can be written as:

(1-0.725B + 0.401B%)X; = (1 — 0.161B"°)(1 — 0.470B")a;



RESIDUAL ANALYSIS AND MODEL DIAGNOSTICS

Using the fitted model, our residuals are white noise (autocorrelations are not significantly different from
zero), which shows no evidence of serial correlation. Additionally, the residuals appear to be relatively
normally distributed, as well.

tl:locorrelation Check of Residuals
To Lag | Chi-Square | DR} Pr = ChiSq Autocorrelations

] 535 2 0.0690 §0.010 -0.035 -0.097 -0.078 0.034 0.063
12 11.90 0.1555 §0.101 0.043 0.092 0.008 0.075 0.012
18 16.49 | 14 0.2844 §0.071 0.091 -0.003 -0.031 -0.012 0.059
24 3075 2 0.0586 §0.130 -0.013 -0.035 -0.021 0.186 -0.026
30 46.73 | 26} 0.0075 §0.035 0.028 -0.115 -0.050 -0.064 -0.191
36 50.41 32 0.0203 §0.035 0.078 -0.045 -0.016 0.054 -0.027
42 62.75 | 3 0.0070 §0.103 -0.087 -0.118  0.024 -0.100 -0.005

Residual Normality Diagnostics for logvalue(1 12)
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These results further confirm that the fitted model adequately explains the time series found in the data.

FORECAST ANALYSIS
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Evaluating the trend of our data in 2012, our model appears to forecast at least the trend of the actual
values rather well. Projecting ahead through 2013, the results our model generates are:



Period Forecast Lower 95% Conf Limit Upper 95% Conf Limit
JAN2013 14936.14 14063.29 15848.42
FEB2013 18155.60 17055.57 19307.25
MAR2013 20399.92 19077.51 21788.94
APR2013 19623.76 18183.13 21147.11
MAY2013 20806.31 19204.16 22505.25
JUN2013 19269.43 17699.50 20940.04
JUL2013 19290.11 17625.27 21068.51
AUG2013 21379.10 19454.26 23411.30
SEP2013 19188.63 17386.08 21125.80
0CT2013 19864.61 17923.25 21957.27
NOV2013 22939.91 20665.29 25394.60
DEC2013 33410.02 30001.74 37096.55

An advanced estimate for clothing & accessory store retail sales data for January 2013 (based on early
reports from a small sampling of firms) was $15,119 million (or $15 billion). The actual value is well within
the confidence interval for our forecast. At least for that one new data point, our model appears to predict

the sales data well.
(http://content.govdelivery.com/attachments/USESAEI/2013/02/13/file_attachments/190485/Advance%2BMonthly%2BSales%2Bfor%2BRetail%2Ba
nd%2BFood%2BServices%2B%2528January%2B2013%2529.pdf)

Additionally, looking at the backtesting results of the selected model versus the simpler airline model, we
see a marginally better MAFE, MSFE, and RMSFE.
Backtest of accepted model:

Backtest results for sales
Model: VAR=logvalue DIFF=(1,12) p=(1,2) q=(10)(12) DATE=period TRAINPCT=80

Obs | _TYPE_ | _FREQ_ mafe msfe rmsfe
1 0 50 | 0.025288  .001134414 0.033681

Backtest of rejected model:
Backtest resulis for sales

Model: VAR=logvalue DIFF=(1,12) q=(1)(12) DATE=period TRAINPC T=80

Obs TYPE_| FREQ_ mafe msfe rmsfe
1 0 50  0.028404 .001469803 0.038338

ANALYSIS OF RESULTS AND DISCUSSION

As noted, our model assumptions appear to fit the sales data well. The first data point beyond our dataset
for January 2013 (again, though not the true value, this is the predicted value based on actual results
reported early) is well within our confidence range for predictions. Our parameters are all significant and
our residuals appear to be white noise.

It should be noted that the first model (a simple, additive airline model MA(1,12,13)) was rejected because
the residuals showed evidence of autocorrelation. Our selected model also has a lower MAFE, MSFE, and
RMSFE than this rejected model. Despite our selected model being relatively simple, these results showed
that the data needed more parameters than the most simple airline model provided. Additionally, the
MAPE for our accepted model is 2.3%, whereas the MAPE of our rejected model is 2.4%.

Another rejected model had many more parameters and seemed to provide a better fit on the data, but the
model failed to converge in the estimation process (likely due to being overparameterized). As seen in many
cases of time series modeling, there may be multiple models that fit the data well (or some may have some
diagnostics better than other models), which means there may be several models that might fit the data
reasonably well, just as we’ve seen with this data set, as well.


http://content.govdelivery.com/attachments/USESAEI/2013/02/13/file_attachments/190485/Advance%2BMonthly%2BSales%2Bfor%2BRetail%2Band%2BFood%2BServices%2B%2528January%2B2013%2529.pdf
http://content.govdelivery.com/attachments/USESAEI/2013/02/13/file_attachments/190485/Advance%2BMonthly%2BSales%2Bfor%2BRetail%2Band%2BFood%2BServices%2B%2528January%2B2013%2529.pdf

APPENDIX

Figure 1: Plot of input values
Evidence of trend and seasonality
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Figure 2: Plot of differenced input values
Evidence of seasonality; trend has been removed
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Figure 3: Plot of lagl and lagl2 differenced input values
Trend and seasonality are gone; data does not have a constant variance
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Figure 4: Plot of log transform (to stabilize variance)
Evidence of trend and seasonality remains
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Figure 5: Plot of differenced log transform
Evidence of seasonality; trend has been removed
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Figure 6: Plot of lagl and lagl2 differenced log transform
Trend and seasonality are gone; variance is more constant
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Figure/Section 8: Analysis of autocorrelations for applicability of airline model.
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Autocorrelation Check for White Noise
To Lag| Chi-Square DF Pr = ChiSq Autocorrelations

] 3191 6 <.0001 -0.404 -0.161 -0.000 0.112 -0.013 -0.043
12 338.11| 12 <.0001 -0.018 0120 -0.004 -0.167 -0.386 0.942
18 387.81| 18 <.0001 -0.389 -0.147 0.000 0.108 -0.014 -0.043
24 B37.35| 24 <.0001 -0.017 0118 -0.009 -0.159 -0.363 0.891
30 704.57 30 <0001 -0.371) -0.133) -0.004 0101 -0.011 -0.044
36 938.45 36 <.0001 -0.014) 0114 -0.013 -0.148 -0.344 0.841

Figure/Section 9: Results of additive MA(1,12,13) airline model

Autocorrelation Check for White Noise

To Lag| Chi-Square DF | Pr > ChiSq Autocorrelations
) 98.72 6 =.0001 -0.533 0.005 0206 -0.245 0.105 0.095
12 16485 12 =.0001 -0.189 0104 07119 -0.244 0276 -0.257
18 17418 18 =.0001 -0.006 0126 -0.013 -0.055 0.005 0.130
24 199.23 24 =.0001 -0.170 0.098 -0.027 -0.095 0.195 -0.092

Augmented Dickey-Fuller Unit Root Tests

Type Lags Rho Pr< Rho| Tau Pr< Tau F
Zero Mean 1 -836.228 00001 -2044 <0001
3 7703587 09999 -10.94 < 0001
5 B489.729 09999 -763 «.0001
Single Mean 1 -B36.231 0.0001 -20.40 <0001 208.04
3 7705760 09999 -10.92 <0001 59.59
5 B512.051 0.9999| -7.61 =.0001 28.97
Trend 1 -836.253  0.0001 -20.35 =<.0001 20715
3| 7634 667 09993 -10.88 <0001 59.35
3 6222073 09993 -760 <0001 2588
Conditional Least Squares Estimation
Approx
Parameter Estimate| Standard Error t Value| Pr= [t] Lag
MA1,1 0.66912 0.04858 13.77| =.0001 1
MAZ,1 0.50583 0.05884 8.60 <0001 12

12

Pr=F

0.0010
0.0010
0.0010
0.0010
0.0010
0.0010



b 28.50
12 G067
18 7704
24 107.66
30 143.086
36 162.05
42 186.28

Autocorrelation Check of Residuals
To Lag| Chi-Square|DF | Pr= ChiSq

4 <.0001
10 <.0001
16 <.0001
22 <.0001
28 <.0001
34 <.0001
40 <.0001

-0.101
-0.162
-0.131
0.175
-0.084
-0.026
0.149

Autocorrelations

0.017
0.084
0.154
0.09%9
0.104
0.097
0.067

0.236 -0.1486
0.133 | -0.201
0.016 | -0.101
0.042 -0.111
-0.212) -0.066
0171 0.023
-0.158 0.108

Model for variable logvalue
Period(s) of Differencing

1,12

Mo mean term in this model.

Moving Average Factors
Factor 1:/1 - 0.66312 B™(1)
Factor 2:|1 - 0.50583 B™{12)

0.052 0175
0.144 | 0.082
0.064 0.032
0.228 -0.095
0.027 -0.243
0.069 -0.152
-0.116) -0.085

Figure/Section 10: Results of multiplicative ARIMA(1,2)x(10,12)12 airline model
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Maximum Likelihood Estimation

Approx
Parameter Estimate | Standard Error | t Value | Pr = |f| | Lag
MA1,1 0.16051 0.06596 243 00150 10
MA2,1 0.47026 0.06215 757 =0001 12
AR1,1 -0.72471 0.06066  -11.95 <0001 1
AR1,2 -0.40097 0.06020 -6.66 | <0001 2

Autocorrelation Check of Residuals

To Lag | Chi-Square | DF | Pr = ChiSq Autocorrelations

B 535 2 0.0690 0.010 -0.035 -0.097 -0.078 0.034 0.063
12 1190 & 0.1555 -0.101 0043 0092 0008 0075 0012
18 16.49 14 0.2644 -0.071 0091 -0.003 -0.031 -0.012 0.059
24 3075 20 0.0586 -0.130 -0.013 -0.035 -0.021 0.186 -0.026
30 46.73 | 26 0.0075 -0.035 0028 -0.115 -0.050 -0.064 -0.191
36 5041 32 0.0203 -0.035 0078 -0.045 -0.016 0.054 -0.027
42 62.75 38 0.0070 0103 -0.087 -0.118 0.024 -0.100 -0.005

Model for variable logvalue

Period(s) of Differencing | 1,12

No mean term in this model.

Autoregressive Factors

Factor 1: 1+ 0.72471 B*(1) + 0.40097 B*(2)

Moving Average Factors
Factor 1: | 1-0.16051 B™(10)
Factor 2: | 1-0.47026 B™(12)
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Figure/Section 11: Backtest of accepted model

Backtest results for sales
Model: VAR=logvalue DIFF=(1,12) p=(1,2) q=(10)(12) DATE=period TRAINPCT=80

Obs | _TYPE_| _FREQ_ mafe msfe rmsfe
1 0 501 0.025288 | .001134414  0.033681

Figure/Section 12: Backtest of rejected model

Backtest results for sales
Model: VAR=logvalue DIFF=(1,12) q=(1)(12) DATE=period TRAINPCT=80

Obs | _TYPE_| _FREQ_ mafe msfe rmsfe
1 0 50 0.023404 001469803 0.038338

Figure 13: Plot of forecast and confidence limits
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Figure 14: MAPE for accepted model
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SAS SOURCE CODE:

options nodate;
ods listing close;

%let MY_FOLDER = D:\Users\Ifloyd\Documents\School Misc;
%include "&MY_FOLDER\backtest macro.sas";

title "Step 1: Import";
proc import datafile="&MY_FOLDER\RetailTimeSeries - not adj.csv'" out=sales

replace;
delimiter = ",";
getnames = yes;
run;

title;

title "Step 2: A quick plot of the input values.";
title2 "(Analysis: Evidence of trend and seasonality.)";
symbol interpol = join; * gives connected lines ;

proc gplot data=sales;

plot value * period;

run;

title;

title "Step 3: Plot shows positive trend. Take difference.";
data sales;

set sales;

diff = value - lag(value);

run;

title;

title "Step 4: Plot after taking difference.";

title2 "(Analysis: Trend gone, but still seasonality.)";
symbol interpol = join; * gives connected lines ;

proc gplot data=sales;

plot diff * period;

run;

title;

title "Step 5: Remove seasonality by taking lagl2 difference.";
data sales;

set sales;

diffl2 = diff - lagl2(diff); * remove seasonailty ;

run;

title;

title "Step 6: Plot after taking lagl2 difference.";

title2 "(Analysis: Now trend *and* seasonality are gone, but';
title3 "variance is not constant.)";

symbol interpol = join; * gives connected lines ;

proc gplot data=sales;
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plot diffl2 * period;
run;
title;

title "Step 7: Stabilize variance by using log transform.";
data sales;

set sales;

logvalue = log(value);

run;

title;

title "Step 8: Plot after log transform.™;

title2 "(Analysis: Need to once again remove trend and seasonality.)";
symbol interpol = join; * gives connected lines ;

proc gplot data=sales;

plot logvalue * period;

run;

title;

title "Step 9: Plot still shows positive trend, so take the difference.™;
data sales;

set sales;

logdiff = logvalue - lag(logvalue);

run;

title;

title "Step 10: Plot after taking difference.";

title2 "(Analysis: Trend gone, but still seasonality.)";
symbol interpol = join; * gives connected lines ;

proc gplot data=sales;

plot logdiff * period;

run;

title;

title "Step 11: Remove seasonality by taking lagl2 difference.™;
data sales;

set sales;

logdiffl2 = logdiff - lagl2(logdiff); * remove seasonailty ;
run;

title;

title "Step 12: Plot after taking lagl2 difference.";
title2 "(Analysis: Now trend *and* seasonality are gone™;
title3 "and variance is more constant.)';

symbol interpol = join; * gives connected lines ;

proc gplot data=sales;

plot logdiffl2 * period;

run;

title;

title "Step 13: Analyze data, check for normality.";
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title2 "(Analysis: Yes, histogram and qg-plot indicate normality.)";
goption reset=global;

proc univariate data=sales;

var logdiffl2;

histogram/normal ;

qgplot /7 normal (mu=est sigma=est);

* output out=stats kurtosis=kurtosis skewness=skewness N=ntot;

run;

title;

goptions reset=global;

proc univariate;

var logdiffl2;

histogram/normal ;

probplot / normal(mu=est sigma=est);

output out=stats kurtosis=kurtosis skewness=skewness N=ntot;
run;

/* steps to compute skewness, kurtosis and Jarque-Bera tests*/
data computation;

set stats;

label pv_kur = "P-value for kurtosis test";
skew_test = skewness/sqrt(6/Ntot);

kurt_test = kurtosis/sqrt(24/Ntot);

Jjb = skew_test*skew_ test+kurt test*kurt_test;
pv_skew = 2* (1-cdf("NORMAL", skew_ test));
pv_kur = 2*(1-cdf("NORMAL", kurt_test));
pv_jb = 1-cdf("CHISQUARE", jb,2);

label pv_kur = "P-value for kurtosis test”
pv_skew= "P-value for skewness test"

pv_jb = "P-value for Jarque & Bera test"

Jjb = "Jarque & Bera statistic';

/* Print out results of tests*/
Title " Results of test on skewness';
proc print data= computation label;
var skewness skew_test pv_skew;

run;

Title " Results of test on kurtosis';
proc print data= computation label;
var kurtosis kurt_test pv_kur;

run;

Title " Results of Jacque and Bera test on normality";
proc print data= computation label;
var skewness kurtosis jb pv_jb;

run;

title "Step 14: Check for applicability of airline model";

title2 "by analyzing correlations of differenced values.";

title3 "(Analysis: Highly correlated at lags 1, 11, 12, and 13.)";
proc arima data=sales;

identify var=logdiff nlag=36;

run;

title;
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Multiplicative models (see notes, Week 6, slide 15).

For monthly time series, annual seasonality has s=12 and the ACF
is not zero at lag 1,11,12 and 13 only. Furthermore, we expect
(lagl coeff) * (lagl2 coeff) approx = (-1) * (lagl3 coeff).
Check: (-0.40425) * (0.94190) approx = (-1) * (-0.38555) ==>
-0.38076 approx = -0.38555, so YES! ;

ook ok % X X

title "Step 15: Try a simple airline model by Fitting";

title2 "additive MA(1,12,13) model on differenced data.";

title3 "(Analysis: Residuals are correlated. Try another model.)";
proc arima data=sales;

identify var=logvalue(1,12) stationarity=(adf=(1 3 5));

estimate g=(1)(12) noconstant;

run;

title;

title "Step 16: Through trial and error, we settled on this.";

title2 "(Analysis: All coefficients are significant and residuals are white
noise.)";

proc arima data=sales;

identify var=logvalue(1,12) nlag=24 stationarity=(adf=(1 3));

estimate p=(1,2) g=(10)(12) noconstant method=ml plot;

run;

title;

title "Step 17: Backtest of accepted model." ;

%backtest(trainpct=80, dataset=sales, date=period, var=logvalue,
diff=(1,12), p=(1,2) g=(10)(12), interval=month, noconstant=Y);

run;

title "Step 18: Backtest of rejected model for comparison purposes.’ ;

%backtest(trainpct=80, dataset=sales, date=period, var=logvalue,
diff=(1,12), g=(1)(12), interval=month, noconstant=Y);

run;

title "Step 19: Run accepted model again, this time writing forecasts to file.";
proc arima data=sales;

identify var=logvalue(1,12) nlag=24 stationarity=(adf=(1 3));

* estimate gq=(1)(12) noconstant method=uls plot;

estimate p=(1,2) g=(10)(12) noconstant method=uls plot;

forecast out=forecasts lead=12 id=period interval=month noprint;

run;

title "Step 20: Retransform the forecast values to get forecasts in the original
scales.";

data retransform;

set forecasts;

value = exp( logvalue );

forecast = exp( forecast + std*std/2 );
195 = exp( 195 );

u9s = exp( u9s );

run;
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title "Step 21: Plot the forecasts and their confidence limits.";
title2 "(Showing last two years only for readability.)";
goption reset=symbol ;
symboll i=join width=3;
symbol2 i=join width=3;
symbol3 i=join width=3;
symbol4 i=join width=3;
proc gplot data=retransform;
where period >= "01Jan2012°d;
plot value * period
forecast * period
195 * period
u95 * period /
overlay haxis= "01Jan2012"d to "01Jan2014°d by year;
run;

title "Step 22: Compute Mean Absolute Percent Error (MAPE).";
data mape (keep=mape);
retain sum 0O;
retain count O;
set retransform end=eof;
where value ne . and forecast ne . ;
ape = abs(forecast - value) / value;
sum = sum + ape;
count = count + 1;
if (eof) then do;
MAPE = sum / count;
format MAPE percent7.1;
output;
end;
run;

* Note the MAPE for the accepted model is 2.3%
* while the MAPE for the rejected model is 2.4% ;

proc print data=mape noobs;
run;
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SAS BACKTEST MACRO:

%macro backtest(TRAINPCT=80, DATASET=, VAR=, DIFF=, P=, Q=, DATE=date,
INTERVAL=month, NOCONSTANT=N);

DePaul CSC425, Winter 2013, Dr. Raffaella Settimi
Macro written by Bill Qualls, First Analytics

EXPLANATTION OF PARAMETERS
(Order of variables is insignificant)

TRAINPCT .. Percent of dataset to be used for training.
So, (100 - TRAINPCT)% will be used for evaluation.
Example: TRAINPCT=80
DATASET .. Time series dataset. Libname optional, defaults to Work.
Example: DATASET=Work.Unemp
VAR .. Name of time series variable.
Example: VAR=ratechg
P .. Specified for AR models. Omit otherwise.
Example: P=(1 3 6)
Q .. Specified for MA models. Omit otherwise.
Example: Q=(1 3 6)
DATE .. Name of date variable. Defaults to date.
Example: DATE=date
INTERVAL .. Date interval. Defaults to month.

Example: INTERVAL=day
Additional parameters added 20130309 for final project
DIFF .. Differencing. Default to none.
Example: DIFF=(1,12)
NOCONSTANT .. Add NOCONSTANT if Y, otherwise omit.
Example: NOCONSTANT=Y
SAMPLE USAGE
%backtest(trainpct=80, dataset=work.unemp, var=ratedif, p=(1), interval=day);

ook 3k 3 X X X b b b b o 3k % X X X % b b b o 3k % % X X X X % b ok % %

%put TRAINPCT=&TRAINPCT;
%put DATASET=&DATASET;

%put VAR=&VAR;

%put DATE=&DATE;

%put P=&P;

%put Q=&Q;

%put DIFF=&DIFF;

%put INTERVAL=&INTERVAL;
%put NOCONSTANT=&NOCONSTANT;

* How many records are in the dataset? ;
data null_;

call symput("NRECS®", trim(left(nrecs)));
set &DATASET nobs=nrecs;

stop;

run;
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* Determine which ones are exclusively for training based on TRAINPCT ;
%let SIZE_OF ROLLING _WINDOW = %sysfunc(round(&NRECS * &TRAINPCT / 100));

* create a working copy of dataset with observation number ;
* as a variable for use in a where clause with proc arima. ;
* also add a placeholder for the predicted value. ;

data Work. MY _COPY_ (keep = &AR &DATE _OBS_ _PRED );
set &DATASET;

_OBS_ = N_;

“PRED_ = .;
run;

* turn off log -- too lengthy ;
filename junk dummy;

proc printto log=junk print=junk;
run;

* Will build the model once for each record used in evaluation. ;
* Each time 1 will predict one record forward. ;

%let MODELS_TO_BE_BUILT = %syseval F(&NRECS - &SIZE_OF _ROLLING_WINDOW);
%do i = 1 %to &MODELS_TO BE BUILT;

* Model using SIZE OF ROLLING _WINDOW records, and make one prediction ;
proc arima data=Work. MY _COPY_ plots=none;
where OBS_ ge &i
and OBS_ le (&i + &SIZE _OF_ROLLING_WINDOW - 1);
identify var=&VAR &DIFF noprint;
estimate
%if (&P ne ") %then %do; p=&P %end;
%if ('&Q" ne ") %then %do; gq=&Q %end;
%if ('&NOCONSTANT™ eq "Y'™) %then %do; NOCONSTANT %end;
method=ml noprint;
forecast lead=1 1d=&DATE interval=&INTERVAL out=Work. MY_RESULTS_ noprint;
run;

* get the predicted value (in the last record) as a macro variable ;
data null_;

p = nrecs;

set Work. MY_RESULTS point=p nobs=nrecs;

call symput("'FORECAST", forecast);

stop;

run;

* move that prediction to its place in the output file ;
proc sql noprint;
update Work._MY_COPY_
set _PRED_ = &FORECAST
where _OBS_ = &i + &SIZE_OF _ROLLING_WINDOW;
quit;
run;

* show progress so far ;
%if (Ysysfunc(mod(&i, 20)) = 0) %then %do;

* print on;
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proc printto log=log print=print;

run;
%put Finished &i iterations;

* print off again;

proc printto log=junk print=junk;

run;
%end;
%end;
* turn print back on ;
proc printto log=log print=print;
run;
* calculate prediction error;

data Work. MY _COPY_;
set Work. MY_COPY_;

Predicted_Error_Squared = (&AR - _PRED_) ** 2;

run;

* turn print back on ;
* proc printto;
* runj;

* calculate prediction error;

data Work. MY _COPY_;

set Work. MY_COPY_;

Predicted_Error = (&AR - _PRED ) ;

Predicted_Error_Squared = (&AR - _PRED_)**2;

absresidual = abs(Predicted Error);
run;

* compute and report the mean square forecast error;
Bif (&P eq ") %then %let PP = ; %else %let PP = p=¢&P;
Bif ('&Q" eq ") %then %let QQ = ; %else %let QQ = g=&Q;

title "Backtest results for &DATASET™;
title2 "Model: VAR=&VAR DIFF=&DIFF &PP
proc summary data=Work. MY_COPY_;
where _OBS_ > &SIZE_OF_ROLLING_WINDOW;
var Predicted Error absresidual;
output out=outm mean(absresidual)=mafe
run;

data outm;

set outm;
rmsfe=sqrt(msfe);
run;

proc print data=outm;
run;

%mend backtest;

&QQ DATE=&DATE TRAINPCT=&TRAINPCT";

mean(Predicted _Error_Squared)=msfe;
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