Chapter 16
More Binary Arithmetic

Objectives

Upon completion of this chapter you will be able to:

- Define even-odd pairs of registers,
- Use the M, MH, and MR instructions to perform binary multiplication, and
- Use the D and DR instructions to perform binary division.

Introduction

In chapter 14 we saw how to add and subtract binary numbers. Specifically, we looked at the A,
AH, AR, S, SH, and SR instructions. Recall that for each of these instructions, the first operand is
always a register, and the second operand is either a fullword, halfword, or register. In this
chapter we will complete our discussion of binary math by looking at the multiplication and
division instructions: M, MH, MR, D, and DR.

Even-odd Register Pairs

In order to discuss binary, or register, multiplication, we must introduce a new concept - that of
even-odd pairs of registers. Recall that there are sixteen registers in all, numbered 0 through 15.
This gives us eight even-odd pairs of registers:

```
R0  R1
R2  R3
R4  R5
R6  R7
R8  R9
R10 R11
R12 R13
R14 R15
```

Remember, an even-odd pair of registers starts with the even number register, which is the lower
of the two numbers. For example, (R2, R3) is an even-odd pair, but (R3, R4) and (R5, R6) are
not even-odd pairs.

Binary Multiplication: The M, MH, and MR Instructions

The M (multiply) instruction multiplies a register by a fullword. For example:

```
L    R9,subtotal
M    R8,discount
```

where SUBTOTAL DS F

where DISCOUNT DS F

- First, one of the values to be multiplied is placed in the odd numbered register of an even-odd
 pair.
- Second, multiply. Specify the even numbered register as the first operand, and the other
 fullword as the second operand. (If the first operand is not an even numbered register, you
 will get a specification exception at run time.)
Finally, the product will be a doubleword occupying the even-odd pair. (Usually the right most portion of the product; that is, the odd numbered register, will be sufficient to hold the product. Recall that a single register can hold a value of up to 2,147,483,647. If necessary, you can use the store multiple instruction to store very large products in a doubleword; for example,STM R4,R5,DBL. Likewise, you can use the load multiple instruction to put a doubleword into a register pair; for example,LM R4,R5,DBL.

We need not be concerned with what is in the even numbered register prior to the multiply. It does not need to be initialized: whatever is there will be replaced by the high order digits of the product.

Let’s look more closely at another example. Given:

| FULL1 DC F’64’ | 00 00 00 40 |
| FULL2 DC F’8’ | 00 00 00 08 |

To multiply FULL1 by FULL2 (64 x 8 = 512 = X’200’) and convert the product to a packed number we code (assume DBLWORD DC D’0’):

```
R4     R5
L    R5,FULL1
  ?? ?? ?? ?? 00 00 00 40
R4     R5
M    R4,FULL2
  00 00 00 00 00 00 02 00
DBLWORD
CVD  R5,DBLWORD
  00 00 00 00 00 00 51 2C
```

We can also use the MR (multiply register) instruction to multiply an even-odd pair by a (single) register. For example:

```
R4     R5
L    R5,FULL1
  ?? ?? ?? ?? 00 00 00 40
L    R6,FULL2
  ?? ?? ?? ?? 00 00 00 40
MR   R4,R6
  00 00 00 00 00 00 02 00
```

You Try It...

1. Given: X DC F’16’, Y DC F’3’, and Z DC F’0’. Supply the instructions to multiply X by Y, with the product in Z and in register 7. Show the intermediate results.
2. Given: A DC F'32', B DC F'4', and C DC F'0'. Supply the instructions to multiply A by B, with the product in C and in register 5. Show the intermediate results.

R4 R5
R4 R5
C

3. Given: register 9 contains 64. Use the M instruction to multiply this by 5, with the product in register 9. Show the intermediate results.

 (before) R8 R9
 ______________________ R8 R9

4. Given: register 5 contains 4, register 6 contains 3, and register 7 contains 2. Supply the instruction to multiply the value in register 7 by the value in register 5, with the product in register 7. Show the intermediate results.

 (before) R6 R7
 ______________________ R6 R7

* *

In both of these examples, the second operand was small (8 and 3). Each would, in fact, fit in a halfword. If one or both of the operands for a multiply instruction is a halfword, the MH (multiply halfword) instruction can be used. The MH instruction is much simpler than the M or MR: it uses a single register only, and this register can be even or odd. For example:

L R8, SUBTOTAL where SUBTOTAL DS F
MH R8, DISCOUNT where DISCOUNT DS H

- First, one of the values to be multiplied is placed in a register. Reminder: use L if the value is a fullword, or LH if the value is a halfword.
- Second, multiply. Specify the register as the first operand, and the halfword as the second operand.
- Finally, the product will be a fullword occupying the register. (If the product will not fit in the register, truncation occurs without warning.)
Consider the following example:

```
FULL1  DC  F'64'
   00 00 00 40
HALF2 DC  H'8'
   00 08
```

To multiply `FULL1` by `HALF2` (64 x 8 = 512 = X'200') and convert the product to a packed number we code:

```
L R4,FULL1
  R4
MH R4,HALF2
  R4
CVD R4,DBLWORD
   DBLWORD
   00 00 00 00 00 00 51 2C
```

You Try It...

5. **Given:** R DC H'15', S DC H'4', and T DC H'0'. Supply the instructions to multiply R by S giving T. Show the intermediate results.

6. **Given:** A DC F'32', B DC H'4', and C DC H'0'. Supply the instructions to multiply A by B giving C. Show the intermediate results.

7. Given: register 6 contains 16. Use the `MH` instruction to multiply this by 4, with the product in register 6. Show the intermediate results.
Binary Division: The D and DR Instructions

Recall from our discussion of the DP (divide packed) instruction, following the division the dividend was replaced by the quotient (on the left) and the remainder (on the right). Something similar occurs with register division. As with register multiplication, register division uses an even-odd pair of registers. Initially, the dividend will occupy an even-odd pair. Following the divide operation, the quotient will be in one register, and the remainder will be in the other register. There is one potential point of confusion: unlike the divide packed instruction, the quotient will be on the right (in the odd register) and the remainder will be on the left (in the even register).

The D (divide) instruction divides the dividend (in an even-odd pair) by a fullword. For example:

\[
\begin{align*}
&L \quad R9, \text{SUM} \\
&M \quad R8, =F’1’ \\
&D \quad R8, \text{COUNT}
\end{align*}
\]

where \text{SUM} DS F

\[
\begin{align*}
&L \quad R9, \text{SUM} \\
&M \quad R8, =F’1’ \\
&D \quad R8, \text{COUNT}
\end{align*}
\]

where \text{COUNT} DS F

- First, the dividend must be placed in the odd numbered register of an even-odd pair. Reminder: use L if the dividend is a fullword, or LH if the dividend is a halfword.
- Second, unlike binary multiplication, the contents of the even numbered register is significant for division. Usually we want to clear (zero) it. We do so by multiplying the even-odd pair by a fullword with value of one. (Recall that to multiply we specify the even register of the even-odd pair, and the product will occupy the pair.)
- Third, divide. Specify the even numbered register as the first operand and a fullword containing the divisor are the second operand. (If the first operand is not an even numbered register, you will get a specification exception at run time.)
- Finally, the quotient will be in the odd numbered register and the remainder will be in the even numbered register.

As mentioned above, the contents of the even numbered register is significant; that is, both registers in the pair determine the value of the dividend. Recognizing this, it is not uncommon to see someone zero out the even numbered register by subtracting it from itself, as in $SR \ R8,R8$ but this will not work if the dividend is negative. Instead, multiply the pair by a fullword of one (as shown above) so as to maintain the integrity of the sign.

Let's look more closely at the above example. Given:

\[
\begin{align*}
&\text{SUM} \quad \text{DC} \quad F’214’ \\
&\text{COUNT} \quad \text{DC} \quad F’8’ \\
&\text{AVG} \quad \text{DC} \quad \text{PL3’0’}
\end{align*}
\]

Copyright © 2009 by Bill Qualls – All Rights Reserved
To divide \(\text{SUM} \) by \(\text{COUNT} \) giving \(\text{AVERAGE} \) (214 / 8 = 26 + remainder 6).

\[
\begin{align*}
L & \quad \text{R9, \text{SUM}} & \quad \text{R8} & \quad \text{R9} \\
M & \quad \text{R8,=F'1'} & \quad \text{R8} & \quad \text{R9} \\
D & \quad \text{R8, \text{COUNT}} & \quad \text{R8} & \quad \text{R9} \\
\text{CVD} & \quad \text{R9, \text{DBLWORD}} & \quad \text{DBLWORD} \\
\text{ZAP} & \quad \text{AVG, \text{DBLWORD}}
\end{align*}
\]

What if we want the result to be rounded? That is, 214 / 8 = 26.75 which we would like to show as 27. In order to do so, rather than multiply the dividend by one, we will multiply by ten. We then have 2140 / 8 = 267, which we can shift-and-round to get 27. For example:

\[
\begin{align*}
L & \quad \text{R9, \text{SUM}} & \quad \text{R8} & \quad \text{R9} \\
M & \quad \text{R8,=F'10'} & \quad \text{R8} & \quad \text{R9} \\
D & \quad \text{R8, \text{COUNT}} & \quad \text{R8} & \quad \text{R9} \\
\text{CVD} & \quad \text{R9, \text{DBLWORD}} & \quad \text{DBLWORD} \\
\text{SRP} & \quad \text{DBLWORD, 64-1, 5} & \quad \text{DBLWORD} \\
\text{ZAP} & \quad \text{AVG, \text{DBLWORD}}
\end{align*}
\]

We can also use the DR (divide register) instruction to divide an even-odd pair by a (single) register:

\[
\begin{align*}
L & \quad \text{R9, \text{SUM}} & \quad \text{R8} & \quad \text{R9} \\
M & \quad \text{R8,=F'10'} & \quad \text{R8} & \quad \text{R9} \\
L & \quad \text{R7, \text{COUNT}} & \quad \text{R8} & \quad \text{R9} \\
\text{DR} & \quad \text{R8, R7}
\end{align*}
\]
Note: there is no divide equivalent to \texttt{MH}; that is, there is no divide halfword. This is not to say a halfword cannot be used as a divisor, simply that it must be loaded to a register first (with \texttt{LH}), and then the \texttt{DR} instruction is used.

\textbf{You Try It...}

8. Given: \texttt{X DC F'17', Y DC H'3', and Z DC PL3'0'}. Supply the instructions to divide \(X \) by \(Y \) giving \(Z \) equal to \(X'00567C' \) (representing 5.67).

\begin{verbatim}
R4 R5
M
LH R3,Y
R4 R5
DBLWORD
DBLWORD
Z
\end{verbatim}

9. Given: \texttt{A DC F'20', B DC F'42', and C DC PL3'0'}. Supply the instructions to divide \(A \) by \(B \) giving \(C \) equal to \(X'00048C' \) (representing 48\%). Hint: \(20,000 / 42 = 476 + R8 \).

\begin{verbatim}
R6 R7
M
L R8,B
R6 R7
DBLWORD
DBLWORD
C
\end{verbatim}
To illustrate these concepts we introduce two programs: COGS16A.MLC and COGS16B.MLC, which are modifications of COGS13A.MLC and COGS13B.MLC respectively. These programs were introduced in chapter 13. COGS16A.MLC will determine nationwide dollar sales for Cogsworth Industries, while COGS16B.MLC will produce a report showing California's contribution to sales. Both programs will read COGS.BIN, which is the binary equivalent to COGS.DAT. COGS.BIN was created by COGS14A.MLC as shown in chapter 14. The program listings follow. Changes to the earlier versions have been shaded. The execution and output are not shown as they are the same as was shown in chapter 13.

Sample Program: Cogsworth's Nationwide Dollar Sales

```
PRINT NOGEN
****************************************************************
* FILENAME: COGS16A.MLC *
* AUTHOR : Bill Qualls *
* SYSTEM : PC/370 R4.2 *
* REMARKS : Determine nationwide dollar sales for *
*            COGSWORTH INDUSTRIES. *
* This is a modification of COGS13A.MLC and *
* illustrates binary multiplication. *
****************************************************************
START 0
REGS
BEGIN BEGIN
WTO 'COGS16A ... Begin execution'
BAL R10,SETUP
MAIN EQU *
CLI EOFSW,C'Y'
BE EOJ
BAL R10,PROCESS
B MAIN
EOJ EQU *
BAL R10,WRAPUP
WTO 'COGS16A ... Normal end of program'
RETURN
****************************************************************
* SETUP - Those things which happen one time only, *
* before any records are processed. *
****************************************************************
SETUP EQU *
ST R10,SVSETUP
OPEN INVENTORY Input is EBCDIC, no CR/LF
BAL R10,READ
L R10,SVSETUP
BR R10
****************************************************************
* READ - Read a record. *
****************************************************************
READ EQU *
ST R10,SVREAD
GET INVENTORY,IREC Read a single product record
B READX
ATEND EQU *
MVI EOFSW,C'Y'
```

(continued)
CHAPTER 16
MORE BINARY ARITHMETIC

READX EQU *
L R10,SVREAD
BR R10

PROCESS - Those things which happen once per record.

PROCESS EQU *
ST R10,SVPROC

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LH R3,ICALIF</td>
<td>Determine total units</td>
</tr>
<tr>
<td>AH R3,IILL</td>
<td>sold for this product</td>
</tr>
<tr>
<td>AH R3,IUTAH</td>
<td></td>
</tr>
<tr>
<td>AH R3,IMISC</td>
<td></td>
</tr>
<tr>
<td>MH R3,ISELL</td>
<td>Multiply units by price</td>
</tr>
<tr>
<td>A R3,TOTAL</td>
<td>Add total thus far</td>
</tr>
<tr>
<td>ST R3,TOTAL</td>
<td>then save back.</td>
</tr>
</tbody>
</table>

BAL R10,READ
L R10,SVPROC
BR R10

**WRAPUP - Those things which happen one time only, after all records have been processed.*

WRAPUP EQU *
ST R10,SVWRAP

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L R3,TOTAL</td>
<td>Must put it in a register</td>
</tr>
<tr>
<td>CVD R3,DBLWORD</td>
<td>to convert it to packed.</td>
</tr>
<tr>
<td>ED ODOLLARS,DBLWORD+4</td>
<td></td>
</tr>
</tbody>
</table>

WTO OMSG
CLOSE INVENTORY
L R10,SVWRAP
BR R10

File definitions

INVENTORY DCB LRECL=28,RECFM=F,MACRF=G,EODAD=ATEND,DDNAME='COGS.BIN'

RETURN ADDRESSES

Miscellaneous field definitions

EOFSW DC CL1'N' End of file? (Y/N)

TOTAL DC F'0' Nationwide dollar sales

DBLWORD DC D'0'

Input record definition

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IREC</td>
<td>0CL28 1-28 Inventory record</td>
</tr>
<tr>
<td>IDESC</td>
<td>CL10 1-10 Product description</td>
</tr>
</tbody>
</table>

(continued)

Copyright © 2009 by Bill Qualls – All Rights Reserved
Sample Program: California’s Contribution to Sales

PRINT NOGEN

* FILENAME: COGS16B.MLC *
* AUTHOR : Bill Qualls *
* SYSTEM : PC/370 R4.2 *
* REMARKS : Produce report for COGSWORTH INDUSTRIES *
* California's contribution to sales. *
* This is a modification of COGS13B.MLC and *
* illustrates binary division *

START 0
REGS
BEGIN BEGIN
WTO 'COGS16B ... Begin execution'
BAL R10,SETUP
MAIN EQU *
CLI EOFSW,C'Y'
BE EOJ
BAL R10,PROCESS
B MAIN
EOJ EQU *
BAL R10,WRAPUP
WTO 'COGS16B ... Normal end of program'
RETURN

* SETUP - Those things which happen one time only, *
* before any records are processed. *

SETUP EQU *
ST R10,SVSETUP
OPEN INVENTORY Input is EBCDIC, no CR/LF
 GI REPORT+10,X'08'
 PC/370 ONLY - Convert all
 output from EBCDIC to ASCII
 OPEN REPORT
 BAL R10,HDGS
 BAL R10,READ
 L R10,SVSETUP
 BR R10

(continued)
HDGS EQU *
ST R10,SVHDGS
PUT REPORT,HD1
PUT REPORT,HD2
PUT REPORT,HD3
PUT REPORT,HD4
PUT REPORT,HD5
PUT REPORT,HD6
L R10,SVHDGS
BR R10

PROCESS EQU *
ST R10,SVPROC
BAL R10,FORMAT
BAL R10,WRITE
BAL R10,READ
L R10,SVPROC
BR R10

FORMAT EQU *
ST R10,SVFORM
MVC OREC,BLANKS
MVC ODESC,DESC
L R3,ICALIF Determine total units
AH R3,IILL sold for this product
AH R3,IUTAH
AH R3,IWISC R3 = Nationwide
LR R2,R3
A R2,TTOTAL Add nationwide so far
ST R2,TTOTAL and save it back.
CVD R3,DLBWORD Convert to packed
ZAP PK2,DLBWORD for printing.
MVC OTOTAL,=X'40202120'
ED OTOTAL,PK2
LH R5,ICALIF R5 = California only
LR R2,R5
A R2,TCALIF Add California so far
ST R2,TCALIF and save it back.
CVD R5,DLBWORD Convert to packed
ZAP PK2,DLBWORD for printing.
MVC OCALIF,=X'40202120'
ED OCALIF,PK2
M R4,=F'1000' Dividend will be in (R4,R5)
DR R4,R3 Divisor (nationwide) in R3
CVD R5,DLBWORD Quotient is in R5
SRP DBLWORD,64-1,5
ZAP PK2,DLBWORD
MVC OPCT,=X'40202120'
ED OPCT,PK2
MVI OPCT+L'OPCT,PERCENT
MVC OCRLF,WCRLF PC/370 only.

(continued)
L R10,SVFORM
BR R10

**
** READ - Read a record. **
**
READ EQU *
ST R10,SVREAD
GET INVENTORY,IREC Read a single product record
B READX

**
** WRITE - Write a single detail line. **
**
WRITE EQU *
ST R10,SVWRITE
PUT REPORT,OREC Write report line
L R10,SVWRITE
BR R10

**
** WRAPUP - Those things which happen one time only, **
** after all records have been processed. **
**
WRAPUP EQU *
ST R10,SVWRAP
PUT REPORT,HD6
MVC OREC,BLANKS
MVC ODESC(6),=C'TOTALS'
L R3,TTOTAL R3 = Nationwide total
CVD R3,DBLWORD Convert to packed
ZAP PK2,DBLWORD for printing.
MVC OTOTAL,=X'40202120' for printing.
ED OTOTAL,PK2
L R5,TCALIF R5 = California only
CVD R5,DBLWORD Convert to packed
ZAP PK2,DBLWORD for printing.
MVC OCALIF,=X'40202120' for printing.
ED OCALIF,PK2
M R4,=F'1000' Dividend will be in (R4,R5)
DR R4,R3 Divisor (nationwide) in R3
CVD R5,DBLWORD Quotient is in R5
SRP DBLWORD,64-1,5
ZAP PK2,DBLWORD
MVC OPCT,=X'40202120' for printing.
ED OPCT,PK2
MVI OPCT+L'OPCT,PERCENT
MVC OCRLF,WCRLF PC/370 only.
BAL R10,WRITE
CLOSE INVENTORY
CLOSE REPORT
WTO 'COGS16B ... Sales report on REPORT.TXT'
L R10,SVWRAP
BR R10

(continued)
CHAPTER 16
MORE BINARY ARITHMETIC

LTORG

* File definitions

INVENTORY DCB LRECL=28,RECFM=F,MACRF=G,EODAD=ATEND,
DDNAME='COGS.BIN'
REPORT DCB LRECL=62,RECFM=F,MACRF=P,
DDNAME='REPORT.TXT'

* RETURN ADDRESSES

SVSETUP DC F'0' SETUP
SVHDGS DC F'0' HDGS
SVPROC DC F'0' PROCESS
SVREAD DC F'0' READ
SVFORM DC F'0' FORMAT
SVWRITE DC F'0' WRITE
SVWRAP DC F'0' WRAPUP

Miscellaneous field definitions

WCRLF DC X'0D25' PC/370 ONLY - EBCDIC CR/LF
EOFSW DC CL1'N' End of file? (Y/N)
BLANKS DC CL62' '
TCALIF DC F'0' Grand total for Calif
TTOTAL DC F'0' Grand total nationwide
DBLWORD DC D'0'
PK2 DC PL2'0'
PERCENT EQU C'\%

Input record definition

DS 0H Force halfword alignment
IREC DS 0CL28 1-28 Inventory record
IDESC DS CL10 1-10 Product description
ICALIF DS H 11-12 Units sold in Calif
IIIL DS H 13-14 Units sold in Illinois
IUTAH DS H 15-16 Units sold in Utah
IWISC DS H 17-18 Units sold in Wisconsin
IBEGIN DS H 19-20 Beginning inventory
IPURCH DS H 21-22 Purchases throughout year
IQOH DS H 23-24 Actual quantity on hand
ICOST DS H 25-26 Cost (each) 99V99
ISELL DS H 27-28 Sell for (each) 99V99

Output (line) definition

OREC DS 0CL62 1-62
ODESC DS CL10 1-10 Product description
DS CL7 11-17
OTOTAL DS CL4 18-21 Units sold Nationwide
DS CL9 22-30
OCALIF DS CL4 31-34 Units sold in Calif
DS CL8 35-42
OPCT DS CL4 43-46 Percent sales from Calif
DS CL14 47-60
OCRLF DS CL2 61-62 PC/370 only - CR/LF

(continued)
CHAPTER 16
MORE BINARY ARITHMETIC

**
* Headings definitions *
**
HD1 DS 0CL62
 DC CL60' COGSWORTH INDUSTRIES '
 DC XL2'0D25'
HD2 DS 0CL62
 DC CL60' California's Contribution to Sales'
 DC XL2'0D25'
HD3 DS 0CL62
 DC CL60'
 DC XL2'0D25'
HD4 DS 0CL62
 DC CL40' Nationwide California '
 DC CL20'Percent of'
 DC XL2'0D25'
HD5 DS 0CL62
 DC CL40' Product Sales Sales '
 DC CL20' National '
 DC XL2'0D25'
HD6 DS 0CL62
 DC CL40'-------- -------- -------- '
 DC CL20'--------'
 DC XL2'0D25'
END BEGIN
Exercises

1. True or false.

 a. (R4, R3) is an even-odd pair of registers.
 b. All binary multiplication instructions use at least one register.
 c. The first operand of an M instruction must specify the odd register of an even-odd pair.
 d. The first operand of an MH instruction must specify the even register of an even-odd pair.
 e. Following an M instruction, the product will occupy an even-odd pair of registers.
 f. Following an MH instruction, the product will occupy a halfword.
 g. It is impossible to multiply a halfword by a fullword with the product occupying the halfword.
 h. When performing binary division, in anticipation of rounding, multiply the even-odd pair containing the dividend by a power of ten.
 i. Following M or D, the product or dividend must be converted to packed decimal in order to properly display its value.
 j. If the dividend is in a register and the divisor is in a halfword, the DH instruction can be used.
 k. The DR instruction uses a total of three registers.
 l. The MR instruction uses a total of two registers.
 m. Following the D instruction, the remainder will be in the even numbered register and the quotient will be in the odd numbered register.

2. Given the following field definitions:

 H1 DC H'25'
 H2 DC H'8'
 H3 DC H'0'
 F1 DC F'6'
 F2 DC F'3'
 F3 DC F'0'

 Find the error (one only) in each of the following:

 a. * Multiply F1 by F2 giving F3
 L R5,F1
 M R5,F2
 ST R5,F3

 b. * Multiply F1 by F2 giving F3
 L R5,F1
 L R6,F2
 M R4,R6
 ST R5,F3
Exercises

c. * Multiply F1 by F2 giving F3
 L R5,F1
 M R4,F2
 ST R4,F3

d. * Multiply H1 by H2 giving H3
 LH R4,H1
 MH R4,H2
 STH R5,H3

e. * Multiply H1 by H2 giving H3
 LH R3,H1
 M R3,H2
 STH R3,H3

f. * Multiply F1 by H2 giving F3
 LH R3,F1
 MH R3,H2
 ST R3,F3

3. Given the following field definitions:

 H1 DC H'25'
 H2 DC H'8'
 H3 DC H'0'
 F1 DC F'6'
 F2 DC F'3'
 F3 DC F'0'

Find the error (one only) in each of the following:

a. * Divide F1 by F2, quotient in F3
 L R5,F1
 M R4,F'1'
 D R4,F2
 ST R4,F3

b. * Divide F1 by F2, quotient in F3
 L R4,F1
 M R4,F'1'
 L R6,F2
 DR R4,R6
 ST R5,F3

c. * Divide H1 by H2, quotient in H3
 LH R5,H1
 M R4,H'1'
 LH R6,H2
 DR R4,R6
 STH R5,H3

d. * Divide H1 by F2, quotient in H3
 LH R3,H1
 M R2,F'1'
 D R2,F2
 ST R3,H3
Exercises

4. Given the following field definitions:

\[
\begin{align*}
F1 & \text{ DC } F'16' \\
F2 & \text{ DC } F'8' \\
H1 & \text{ DC } H'4' \\
H2 & \text{ DC } F'3' \\
DBL & \text{ DC } D'0' \\
PK3 & \text{ DC } PL3'0'
\end{align*}
\]

Supply the instructions to perform each of the following. Show all intermediate results. Start with fresh data each time.

a. Multiply \(F1 \) by \(F2 \) giving \(F2 \).
b. Multiply \(H1 \) by \(H2 \) giving \(H1 \).
c. Multiply \(F1 \) by \(H1 \) giving \(F2 \).
d. Multiply \(H2 \) by \(F2 \) giving \(F1 \).
e. Multiply \(F1 \) by 2 giving \(F1 \).
f. Multiply \(H1 \) by 2 giving \(H1 \).
g. Divide \(F1 \) by \(F2 \) giving quotient in \(F1 \).
h. Divide \(F1 \) by \(H1 \) giving remainder in \(H2 \).
i. Divide \(F2 \) by \(H2 \) giving quotient in \(PK3 \).
j. Divide \(H2 \) by \(F2 \) giving remainder in \(PK3 \).
k. Divide \(F1 \) by 5 giving quotient in \(PK3 \).
l. Divide \(H1 \) by 5 giving remainder in \(H2 \).

5. Write a program which will read the binary version of the \texttt{TOOL} file (\texttt{TOOL.BIN}) produced in exercise 8 of chapter 14 and create the Markup report shown in exercise 8 of chapter 13. Do all arithmetic in binary; that is, use packed fields only as required for the \texttt{ED} command.