
Chapter 2

Defining and Moving Character Data

__

Copyright © 2009 by Bill Qualls – All Rights Reserved

Objectives

Upon completion of this chapter you will be able to:

 Define alphanumeric fields and records using the DS and DC instructions,

 Move alphanumeric fields using the MVC instruction,

 Define alphanumeric literals and equated values,

 Move alphanumeric literals using the MVI and MVC instructions,

 Produce a formatted list of the records in a file, and

 Produce report headings.

Introduction

In the previous chapter we produced an 80/80, or card-image, list of the records in the

TEACHER file. In this chapter we will continue with that example. Specifically, we would like to

produce formatted report with report and column headings. We will begin by producing a

quick-and-dirty listing of the records in this file. By quick-and-dirty we mean that, while each field

will be in its own column, there will be no headings, no page numbers, etc. Our listing will appear

as follows:

 1 2 3 4 5 6

 123456789012345678901234567890123456789012345678901234567890

 XXX XXXXXXXXXXXXXXX XXXX X XXXX

 XXX XXXXXXXXXXXXXXX XXXX X XXXX

 XXX XXXXXXXXXXXXXXX XXXX X XXXX

 : : : : :

 : : : : :... Phone

 : : : :....... Tenured?

 : : :.............. Degree

 : :................................ Name

 :...................................... ID number

In order to do so, we must be able to

 describe the input and output records, and

 move the input fields to their respective output fields.

Defining and Moving Character Data

The first instruction we will look at is the MVC instruction. MVC stands for Move Character. It is

used to copy the contents of one field into another. The instruction is quite different from the

move instruction (or its equivalent) in other languages. Specifically,

When using the MVC instruction, the length of the move is determined

strictly by the length of the receiving field (unless overridden), and a

maximum of 256 characters can be moved.

CHAPTER 2 2.2

DEFINING AND MOVING CHARACTER DATA

__

__

Copyright © 2009 by Bill Qualls – All Rights Reserved

To illustrate, we will define three fields: FLDA is five byte long and contains 'ABCDE', FLDB is three

bytes long and contains 'FGH', and FLDC is four bytes long and contains 'IJKL'. FLDA, FLDB, and

FLDC then occupy (5 + 3 + 4) = 12 contiguous bytes of memory. This can be shown as follows:

A B C D E F G H I J K L

We would define these fields in BAL as follows:

 FLDA DC CL5'ABCDE'

 FLDB DC CL3'FGH'

 FLDC DC CL4'IJKL'

DC stands for Define Constant. Its purpose is (1) to allocate space, (2) to assign a name to that

space, (3) to indicate the type of data the space is intended to hold, and (4) to give that space

some initial value.

 FLDA DC CL5'ABCDE'

 : : :: :

 : : :: :... Initial value is ABCDE

 : : :: Value is always enclosed in apostrophes

 : : ::

 : : ::...... Length of field is five (L5)

 : : :

 : : :....... Field is intended to hold character data

 : :

 : :............. Define Constant

 :

 :...................... Field name is FLDA

For the benefit of the reader who knows COBOL, the COBOL equivalent would be as follows:

 05 FLDA PIC X(5) VALUE 'ABCDE'.

 05 FLDB PIC X(3) VALUE 'FGH'.

 05 FLDC PIC X(4) VALUE 'IJKL'.

In COBOL, if the receiving field is shorter than the sending field, the move is truncated. For

example, MOVE FLDA TO FLDB results in a value of 'ABC' in FLDB, with 'DE' being truncated. On the

other hand, if the receiving field is longer than the sending field, the receiving field is padded with

trailing blanks. For example, MOVE FLDB TO FLDA results in a value of 'FGHbb' in FLDA (b will be

used throughout to indicate a blank. The strike-through is used to distinguish a blank from a

lowercase b).

Now, let's attempt the BAL equivalent of the previous COBOL moves. To move FLDA to FLDB, we

code: MVC FLDB,FLDA

CHAPTER 2 2.3

DEFINING AND MOVING CHARACTER DATA

__

__

Copyright © 2009 by Bill Qualls – All Rights Reserved

In BAL, the instruction, or operation, must begin some place after column one. Recall that column

one is for comments and labels. The operation usually begins in column ten by convention. At

least one blank must separate the instruction from its parameters, or operands. The operands

usually begin in column sixteen by convention. Multiple operands are separated by commas,

without blanks. Optionally, comments may be put on the remainder of the line: at least one blank

must separate the last operand from the comments.

Note that with the MVC instruction (as with most, but not all, BAL instructions), the first operand is

the receiving field. As mentioned above, the length of the move is determined by the length of the

receiving field. In this case, FLDB is three bytes long (CL3 in the DC instruction), so three bytes will

be moved regardless of the length of the second operand, or sending field .

The result is that the first three bytes of 'ABCDE' will be moved to FLDB, the result being FLDB

contains 'ABC'. The same twelve bytes in memory would now contain:

A B C D E

A B C

I J K L

We see that when the length of the receiving field is less than or equal to the length of the sending

field, BAL's MVC works the same as COBOL's MOVE.

Let's try the second example. To avoid confusion, we start with "fresh" data:

A B C D E F G H I J K L

To move FLDB to FLDA, we code MVC FLDA,FLDB

In this case, FLDA is five bytes long (CL5 in the DC instruction), so five bytes will be moved even

though FLDB is only three bytes long! The result will depend upon what is in the first two bytes of

memory immediately following FLDB. In this case it is 'IJ', the first two bytes of FLDC. Therefore

FLDA will contain 'FGHIJ'. The same twelve bytes in memory would now contain:

F G H I J

F G H I J K L

The results are probably not what you would have expected! This concept of the length of an

operation being determined by the length of one operand (only), regardless of the length of the

other, is one of the more difficult concepts to get used to when learning BAL for the first time.

* * * * * * * * * * * * * * * * * * * *

CHAPTER 2 2.4

DEFINING AND MOVING CHARACTER DATA

__

__

Copyright © 2009 by Bill Qualls – All Rights Reserved

You Try It...

Show the result of each of the following MVCs. Start with fresh data each time.

Before A B C D E F G H I J K L

1.

MVC FLDC,FLDA

2.

MVC FLDC,FLDB

3.

MVC FLDB,FLDC

* * * * * * * * * * * * * * * * * * * *

We return now to the problem at hand: to produce a quick-and-dirty listing of the records in the

TEACHER file according to specifications. First, we need to define the input record. Recall the

record layout for the TEACHER file:

Field

Nbr

Field

Name

Description

Begins

Ends

Len

Format

1 TID Teacher ID 1 3 3 ZD

2 TNAME Teacher name 4 18 15 CH

3 TDEG Highest degree 19 22 4 CH

4 TTEN Tenured? 23 23 1 Y/N

5 TPHONE Teacher phone 24 27 4 ZD

6 TCRLF PC/370 Only 28 29 2 CR/LF

Note that I have chosen to limit the field names in all of my record layouts to seven characters.

BAL allows eight-character field names. Field names may contain national (A-Z, @, #, and $) or

numeric (0-9) characters, and must begin with a national character. I have limited my field names

to seven characters, so that I can add one more character in front, such as I (for input fields), O

(for output fields), or W (for work fields).

As this is the description of the input record, I will use an I as the first character of each field

name (not because I have to, just because it makes sense.) The complete record layout follows:

IREC DS 0CL29 Teacher record

ITID DS CL3 Teacher ID nbr

ITNAME DS CL15 Teacher name

ITDEG DS CL4 Highest degree

ITTEN DS CL1 Tenured?

ITPHONE DS CL4 Phone nbr

ITCRLF DS CL2 PC/370 only - CR/LF

Here we use the DS instruction rather than the DC. DS stands for Define Storage. It serves the same

purpose as DC, except that it does not assign an initial value. (If you are familiar with COBOL, a DS is

like a field definition without a VALUE clause.) There is no need to assign a value to these fields.

They will not be referenced prior to the first file read (GET), after which they will all have values.

CHAPTER 2 2.5

DEFINING AND MOVING CHARACTER DATA

__

__

Copyright © 2009 by Bill Qualls – All Rights Reserved

Comments are used to describe each field. Nevertheless, field names should be as meaningful as

possible (with the eight character limitation). I often include the beginning and ending positions of

the the field in the comments. For example:

IREC DS 0CL29 1-29 Teacher record

ITID DS CL3 1- 3 Teacher ID nbr

ITNAME DS CL15 4-18 Teacher name

ITDEG DS CL4 19-22 Highest degree

ITTEN DS CL1 23-23 Tenured?

ITPHONE DS CL4 24-27 Phone nbr

ITCRLF DS CL2 28-29 PC/370 only - CR/LF

Let's look again at the 0CL29. In an earlier chapter we said that the zero meant that this field

(IREC) would be subdivided. The zero here is actually a multiplier, meaning there are zero

occurances of 29 bytes, meaning IREC is defined as 29 bytes in length, but does not get any

storage of its own. Rather, it simply overlaps those fields following it which occupy the next 29

bytes.

* * * * * * * * * * * * * * * * * * * *

The use of non-zero multipliers is quite common as well. For example, if I want a ten byte field

containing all asterisks, I could code any of the following:

 STARS DC CL10'**********'

 STARS DC C'**********'

 STARS DC 10CL1'*'

 STARS DC 10C'*'

 STARS DC 5CL2'**'

 STARS DC 2CL5'*****'

You cannot assign a value (using DC) to a field defined with a zero multiplier. Also, if you attempt

to assign a value with a DS rather than DC, you will not get an error message; but the value is

ignored. That can be a very difficult error to find if you're not aware of it!

You Try It...

Which of the following will define a twenty-four byte field containing blanks?

4. BLANKS DC CL24' '

5. BLANKS DS 4CL6' '

6. BLANKS DC 2CL12' '

7. BLANKS DC 0CL24' '

8. BLANKS DC 24C' '

CHAPTER 2 2.6

DEFINING AND MOVING CHARACTER DATA

__

__

Copyright © 2009 by Bill Qualls – All Rights Reserved

The desired report format is as follows:

 1 2 3 4 5 6

 123456789012345678901234567890123456789012345678901234567890

 XXX XXXXXXXXXXXXXXX XXXX X XXXX

 XXX XXXXXXXXXXXXXXX XXXX X XXXX

 XXX XXXXXXXXXXXXXXX XXXX X XXXX

 : : : : :

 : : : : :... Phone

 : : : :....... Tenured?

 : : :.............. Degree

 : :................................ Name

 :...................................... ID number

Note the report is 60 characters wide. But recall from an earlier discussion that, when using

PC/370, we must account for the carriage return/line feed as well. Consequently, our report will

be 62 characters wide. Thus, the LRECL parameter of the DCB for REPORT will be LRECL=62.

OREC DS 0CL62

OTID DS CL3 Teacher ID nbr

 DC CL3' '

OTNAME DS CL15 Teacher name

 DC CL3' '

OTDEG DS CL4 Highest degree

 DC CL3' '

OTTEN DS CL1 Tenured?

 DC CL3' '

OTPHONE DS CL4 Phone nbr

 DC CL21' '

OCRLF DS CL2 PC/370 only - CR/LF

Note that the gaps between the fields have been given initial values of blanks. I could have

initialized all of the fields to blanks (if I change the DSs to DCs), but it isn't necessary since those

fields will not be used until after the input fields have been moved in. Even though each field is

more than one byte long, a single blank is sufficient. When defining character data (DC, with type

C), the field will be padded with blanks. This should not be confused with the MVC instruction,

which does not pad!

I will add another section to the program: Miscellaneous field definitions. I like to group any work

fields together. I often start the field names with W. I know that my use of PC/370 necessitates that

I put a CR/LF at the end of each print line, so I have added a work field to the program for this

purpose. This field is defined as:

*

* Miscellaneous field definitions

*

WCRLF DC X'0D25' PC/370 ONLY - EBCDIC CR/LF

The X indicates that this field is intended to hold hexadecimal data. The hexadecimal 0D

corresponds to an EBCDIC carriage return, and a hexadecimal 25 corresponds to an EBCDIC

line feed. This same field will be used in most of our programs.

CHAPTER 2 2.7

DEFINING AND MOVING CHARACTER DATA

__

__

Copyright © 2009 by Bill Qualls – All Rights Reserved

Having defined the fields, we can now move them. The MVCs to move the input or work fields to

the corresponding output fields are:

 MVC OTID,ITID Move teacher ID Nbr to output

 MVC OTNAME,ITNAME Move teacher Name to output

 MVC OTDEG,ITDEG Move highest degree to output

 MVC OTTEN,ITTEN Move tenure to output

 MVC OTPHONE,ITPHONE Move phone nbr to output

 MVC OCRLF,WCRLF PC/370 ONLY - end line w/ CR/LF

Note that I used WCRLF rather than ITCRLF to move a carriage return/line feed to OCRLF. I could

have used either one. I will always use WCRLF. Here's one reason: perhaps I am reading a file which

does not have a CR/LF at the end of each record. For example, perhaps when I keyed in the data, I

did not press the Enter key after each 29 bytes of data. It's okay to do so, and it does save space

(two bytes per record). But I usually press Enter so I can view the data more easily using DOS'

TYPE command, or something similar. Nevertheless, if I did not press Enter, there would be no

ITCRLF field, and to produce the report I would have to make use of another field such as WCRLF.

You can see from the above discussion that I never reference ITCRLF in this program. I need to

have the two bytes of storage allocated to hold it. Afterall, it is there, even if I don't use it. But if I

choose to do so, I can leave off the name of the field since it is never used. For example, I could

code:

IREC DS 0CL29 1-29 Teacher record

ITID DS CL3 1- 3 Teacher ID nbr

ITNAME DS CL15 4-18 Teacher name

ITDEG DS CL4 19-22 Highest degree

ITTEN DS CL1 23-23 Tenured?

ITPHONE DS CL4 24-27 Phone nbr

 DS CL2 28-29 PC/370 only - CR/LF

You will see many uses of this (omitting a field name) when we discuss creating report headings

in the next chapter. (If you are familiar with COBOL, this is the BAL equivalent to a FILLER.) In this

program, however, I would prefer to continue to use the label ITCRLF for the sake of

completeness. It doesn't hurt anything, and has no effect on program execution time.

The complete program, TEACH2A.MLC , and its output follow.

CHAPTER 2 2.8

DEFINING AND MOVING CHARACTER DATA

__

__

Copyright © 2009 by Bill Qualls – All Rights Reserved

 PRINT NOGEN

**

* FILENAME: TEACH2A.MLC *

* AUTHOR : Bill Qualls *

* SYSTEM : PC/370 R4.2 *

* REMARKS : A quick-and-dirty list of teachers. *

**

 START 0

 REGS

BEGIN BEGIN

 WTO 'TEACH2A ... Begin execution'

 OI TEACHERS+10,X'08' PC/370 ONLY - Convert all

* input from ASCII to EBCDIC

 OI REPORT+10,X'08' PC/370 ONLY - Convert all

* output from EBCDIC to ASCII

 OPEN TEACHERS

 OPEN REPORT

LOOP GET TEACHERS,IREC Read a single teacher record

 MVC OTID,ITID Move teacher ID Nbr to output

 MVC OTNAME,ITNAME Move teacher Name to output

 MVC OTDEG,ITDEG Move highest degree to output

 MVC OTTEN,ITTEN Move tenure to output

 MVC OTPHONE,ITPHONE Move phone nbr to output

 MVC OCRLF,WCRLF PC/370 ONLY - end line w/ CR/LF

 PUT REPORT,OREC Write report line

 B LOOP

*

* EOJ processing

*

ATEND CLOSE TEACHERS

 CLOSE REPORT

 WTO 'TEACH2A ... Teacher list on REPORT.TXT'

 WTO 'TEACH2A ... Normal end of program'

 RETURN

*

* Literals, if any, will go here

*

 LTORG

*

* File definitions

*

TEACHERS DCB LRECL=29,RECFM=F,MACRF=G,EODAD=ATEND,

 DDNAME='TEACHER.DAT'

REPORT DCB LRECL=62,RECFM=F,MACRF=P,

 DDNAME='REPORT.TXT'

*

* Miscellaneous field definitions

*

WCRLF DC X'0D25' PC/370 ONLY - EBCDIC CR/LF

*

* Input record definition

*

IREC DS 0CL29 Teacher record

ITID DS CL3 Teacher ID nbr

ITNAME DS CL15 Teacher name

ITDEG DS CL4 Highest degree

ITTEN DS CL1 Tenured?

ITPHONE DS CL4 Phone nbr

ITCRLF DS CL2 PC/370 only - CR/LF

(continued)

CHAPTER 2 2.9

DEFINING AND MOVING CHARACTER DATA

__

__

Copyright © 2009 by Bill Qualls – All Rights Reserved

*

* Output (line) definition

*

OREC DS 0CL62

OTID DS CL3 Teacher ID nbr

 DC CL3' '

OTNAME DS CL15 Teacher name

 DC CL3' '

OTDEG DS CL4 Highest degree

 DC CL3' '

OTTEN DS CL1 Tenured?

 DC CL3' '

OTPHONE DS CL4 Phone nbr

 DC CL21' '

OCRLF DS CL2 PC/370 only - CR/LF

 END BEGIN

__

A:\MIN>teach2a

TEACH2A ... Begin execution

TEACH2A ... Teacher list on REPORT.TXT

TEACH2A ... Normal end of program

A:\MIN>type report.txt

732 BENSON, E.T. PHD N 5156

218 HINCKLEY, G.B. MBA N 5509

854 KIMBALL, S.W. PHD Y 5594

626 YOUNG, B. MBA Y 5664

574 SMITH, J. MS Y 5320

Defining and Moving Alphanumeric Literals

In the previous section we have saw how to define and move character data. Specifically, we

moved the fields of an input record to the corresponding fields of an output record. Here we will

look at how to move character constants, or literals. The following examples will help to illustrate

the need for doing so:

 A phone number stored as XXXXXXX is to be printed as XXX-XXXX. The hyphen (-) is the

constant.

 A social security number stored as XXXXXXXXX is to be printed as XXX-XX-XXXX . Again, the

hyphens are constant.

 A date stored as YYMMDD is to be printed as MM/DD/19YY . Here the slashes (/) and the 19 are

constant.

We will show several ways to move literals. We will concentrate on the first and third examples.

(The second example is very similar to the first and will be left as an exercise.)

* * * * * * * * * * * * * * * * * * * *

Example #1 - A phone number stored as XXXXXXX is to be printed as XXX-XXXX.

Let's first define the input and output fields as follows:

CHAPTER 2 2.10

DEFINING AND MOVING CHARACTER DATA

__

__

Copyright © 2009 by Bill Qualls – All Rights Reserved

 IPHONE DS 0CL7

 IPFX DS CL3

 ILINE DS CL4

 OPHONE DS 0CL8

 OPFX DS CL3

 OHYPHEN DS CL1

 OLINE DS CL4

Moving the prefix and line are no problem: we simply use the MVC instruction as we have already

discussed it:

 MVC OPFX,IPFX

 MVC OLINE,ILINE

But what about moving the hyphen? One solution would be to define a new work field:

 WHYPHEN DC CL1'-'

We can then code MVC OHYPHEN,WHYPHEN

There is nothing wrong with this method; it works. But there are better ways, both in terms of

simplicity in coding, execution time, and memory. We can save ourselves some time in coding by

using a constant, or literal, rather than defining a work field with a value of '-'. For example, we

could code:

 MVC OHYPHEN,=CL1'-'

or

 MVC OHYPHEN,=C'-'

Note the equal sign is required. These two methods (using a defined field vs. using a literal) are

illustrated in the next two programs, MOVE2A.MLC and MOVE2B.MLC:

 PRINT NOGEN

**

* FILENAME: MOVE2A.MLC *

* AUTHOR : Bill Qualls *

* SYSTEM : PC/370 R4.2 *

* REMARKS : Demonstrate character moves. *

**

 START 0

BEGIN BEGIN

 WTO IPHONE

 MVC OPFX,IPFX

 MVC OHYPHEN,WHYPHEN

 MVC OLINE,ILINE

 WTO OPHONE

 RETURN

*

* Literals if any will go here

*

 LTORG

(continued)

CHAPTER 2 2.11

DEFINING AND MOVING CHARACTER DATA

__

__

Copyright © 2009 by Bill Qualls – All Rights Reserved

*

* Other field definitions

*

WHYPHEN DC CL1'-'

*

IPHONE DS 0CL7

IPFX DC CL3'555'

ILINE DC CL4'1212'

*

OPHONE DS 0CL8

OPFX DS CL3

OHYPHEN DS CL1

OLINE DS CL4

 END BEGIN

__

A:\MIN>move2a

5551212

555-1212

__

 PRINT NOGEN

**

* FILENAME: MOVE2B.MLC *

* AUTHOR : Bill Qualls *

* SYSTEM : PC/370 R4.2 *

* REMARKS : Demonstrate character moves. *

**

 START 0

BEGIN BEGIN

 WTO IPHONE

 MVC OPFX,IPFX

 MVC OHYPHEN,=CL1'-'

 MVC OLINE,ILINE

 WTO OPHONE

 RETURN

*

* Literals if any will go here

*

 LTORG

*

* Other field definitions

*

IPHONE DS 0CL7 Note that the field

IPFX DC CL3'555' definition for WHYPHEN

ILINE DC CL4'1212' has been removed.

*

OPHONE DS 0CL8

OPFX DS CL3

OHYPHEN DS CL1

OLINE DS CL4

 END BEGIN

__

A:\MIN>move2b

5551212

555-1212

CHAPTER 2 2.12

DEFINING AND MOVING CHARACTER DATA

__

__

Copyright © 2009 by Bill Qualls – All Rights Reserved

You Try It...

A phone number with area code stored as XXXXXXXXXX is to be printed as (XXX)XXX-XXXX

9. Define the input field.

10. Define the output field.

11. Write the instructions necessary to move the input field to the output field. Include the

hyphen and parentheses.

* * * * * * * * * * * * * * * * * * * *

Many beginning programmers are under the (mistaken) impression that they can save memory by

using literals instead of defining variables with the desired values. This is simply not true. These

two examples are functionally equivalent. In fact, whenever a literal is coded in such a way, the

assembler generates a field definition , just as if you had defined one and given it a name. These

fields which are generated by the assembler are placed after the LTORG instruction (which we have

already used but put off discussing.) We can see this by examining the .PRN files produced by the

A370 step. Check the .PRN files on the next page and notice:

 Both MVC instructions to move the hyphen occupy six bytes. This can be seen by looking at the

object code, which is shown in hexadecimal and to the left of the instruction in the .PRN

listing. In both cases it is equal to D200D0ABD0A0 . These twelve hex digits occupy six bytes.

This is the amount of memory required by all MVC instructions. (That's just the instruction, not

the data.)

 When a literal was used (in MOVE2B.MLC), the assembler generated a field definition and place it

after the LTORG. The result is that the same amount of memory was used for the hyphen: even

though we reduced the memory requirements by one byte when we took out the definition for

WHYPHEN, the assembler put back one byte for the literal.

 Finally, the total program length is the same: the address of the first byte of the last field in

each program is 0000BC.

CHAPTER 2 2.13

DEFINING AND MOVING CHARACTER DATA

__

__

Copyright © 2009 by Bill Qualls – All Rights Reserved

Taken from MOVE2A.PRN

 00007C D202D0A8D0A1 00B8 00B1 29 MVC OPFX,IPFX

 000082 D200D0ABD0A0 00BB 00B0 30 MVC OHYPHEN,WHYPHEN

 000088 D203D0ACD0A4 00BC 00B4 31 MVC OLINE,ILINE

 0000AA 42 *

 0000AA 43 * Literals if any will go here

 0000AA 44 *

 0000B0 45 LTORG

 0000B0 46 *

 0000B0 47 * Other field definitions

 0000B0 48 *

 0000B0 60 49 WHYPHEN DC CL1'-'

 0000B1 50 *

 0000B1 51 IPHONE DS 0CL7

 0000B1 F5F5F5 52 IPFX DC CL3'555'

 0000B4 F1F2F1F2 53 ILINE DC CL4'1212'

 0000B8 54 *

 0000B8 55 OPHONE DS 0CL8

 0000B8 56 OPFX DS CL3

 0000BB 57 OHYPHEN DS CL1

 0000BC 58 OLINE DS CL4

 000000 59 END BEGIN

Taken from MOVE2B.PRN

 00007C D202D0A8D0A1 00B8 00B1 29 MVC OPFX,IPFX

 000082 D200D0ABD0A0 00BB 00B0 30 MVC OHYPHEN,=CL1'-'

 000088 D203D0ACD0A4 00BC 00B4 31 MVC OLINE,ILINE

 0000AA 42 *

 0000AA 43 * Literals if any will go here

 0000AA 44 *

 0000B0 45 LTORG

 0000B0 60 45 CL1'-'

 0000B1 46 *

 0000B1 47 * Other field definitions

 0000B1 48 *

 0000B1 49 IPHONE DS 0CL7

 0000B1 F5F5F5 50 IPFX DC CL3'555'

 0000B4 F1F2F1F2 51 ILINE DC CL4'1212'

 0000B8 52 *

 0000B8 53 OPHONE DS 0CL8

 0000B8 54 OPFX DS CL3

 0000BB 55 OHYPHEN DS CL1

 0000BC 56 OLINE DS CL4

 000000 57 END BEGIN

The MVI Instruction

Whenever a character literal of length one is moved, you should use the MVI instruction instead of

the MVC instruction. The MVI, or Move Immediate, instruction differs from the MVC instruction in

several ways:

CHAPTER 2 2.14

DEFINING AND MOVING CHARACTER DATA

__

__

Copyright © 2009 by Bill Qualls – All Rights Reserved

 With MVI, the move is always for a length of one, regardless of the length of the receiving

field. (Recall that with MVC, the move is always determined by the length of the receiving

field.)

 With MVI, you can move a literal only. (For example, I could not use the MVI to move the

teacher's tenure status to the output area, even though that field is defined as one byte in

length.)

The equivalent MVI instruction is MVI OHYPHEN,C'-'

Note that an equal sign is not used with MVI! Whereas with the MVC instruction, the equal sign

was required, with the MVI instruction the equal sign is not allowed.

The use of the MVI instruction is illustrated in the next program, MOVE2C.MLC .

 PRINT NOGEN

**

* FILENAME: MOVE2C.MLC *

* AUTHOR : Bill Qualls *

* SYSTEM : PC/370 R4.2 *

* REMARKS : Demonstrate character moves. *

**

 START 0

BEGIN BEGIN

 WTO IPHONE

 MVC OPFX,IPFX

 MVI OHYPHEN,C'-'

 MVC OLINE,ILINE

 WTO OPHONE

 RETURN

*

* Literals if any will go here

*

 LTORG

*

* Other field definitions

*

IPHONE DS 0CL7

IPFX DC CL3'555'

ILINE DC CL4'1212'

*

OPHONE DS 0CL8

OPFX DS CL3

OHYPHEN DS CL1

OLINE DS CL4

 END BEGIN

__

A:\MIN>move2c

5551212

555-1212

If we examine the .PRN file, can compare it to the .PRN files produced by MOVE2A.MLC and

MOVE2B.MLC we can see that:

CHAPTER 2 2.15

DEFINING AND MOVING CHARACTER DATA

__

__

Copyright © 2009 by Bill Qualls – All Rights Reserved

 The MVI instruction to move the hyphen occupies four bytes only (vs. six bytes for the MVC

instruction.) This can be seen by looking at the object code, which is shown in hexadecimal

and to the left of the instruction in the .PRN listing. It is equal to 9260D0A2. These eight hex

digits occupy four bytes. This is the amount of memory required by all MVI instructions.

 The value of the literal (in this case '-') is actually a part of the instruction. If we examine the

object code more closely we see that the second byte ('60' in '9260D0A2') is the hexadecimal

equivalent to a hyphen.

 When an MVI is used, the assembler does not generate a field to be placed after the LTORG. As

we've just seen, there's no need to do so: the value is actually a part of the instruction.

 The program requires less memory. The address of the first byte of the last field in this

program is 0000B3.

 Finally (and this is an important fact, but not apparent from the listings), the MVI instruction is

faster executing than is the MVC instruction. Sure, it doesn't make any difference in these

programs, but when you're processing fifty million records, such as in a targeted marketing

application, the difference can be significant.

* * * * * * * * * * * * * * * * * * * *

Taken from MOVE2C.PRN

 00007C D202D09FD098 00AF 00A8 29 MVC OPFX,IPFX

 000082 9260D0A2 00B2 30 MVI OHYPHEN,C'-'

 000086 D203D0A3D09B 00B3 00AB 31 MVC OLINE,ILINE

 0000A8 42 *

 0000A8 43 * Literals if any will go here

 0000A8 44 *

 0000A8 45 LTORG

 0000A8 46 *

 0000A8 47 * Other field definitions

 0000A8 48 *

 0000A8 49 IPHONE DS 0CL7

 0000A8 F5F5F5 50 IPFX DC CL3'555'

 0000AB F1F2F1F2 51 ILINE DC CL4'1212'

 0000AF 52 *

 0000AF 53 OPHONE DS 0CL8

 0000AF 54 OPFX DS CL3

 0000B2 55 OHYPHEN DS CL1

 0000B3 56 OLINE DS CL4

 000000 57 END BEGIN

CHAPTER 2 2.16

DEFINING AND MOVING CHARACTER DATA

__

__

Copyright © 2009 by Bill Qualls – All Rights Reserved

Equated Values

Consider the following MVI instructions:

 MVI ELIGIBLE,C'Y'

 MVI TAXABLE,C'N'

 MVI GENDER,C'F'

 MVI OSLASH,C'/'

When you are moving a Y or N to a field, the meaning is pretty obvious. In those cases where you

do not move a Y or N, the field name (such as GENDER) will often make the meaning of the

immediate value (M or F) obvious. But what about the following:

 MVI RACE,C'1'

 MVI STATUS,C'D'

What does a RACE = '1' mean? What is STATUS, and what does a value of 'D' indicate? The

following are much more meaningful:

 MVC RACE,HISPANIC where... HISPANIC DC CL1'1'

 MVC STATUS,DIVORCED DIVORCED DC CL1'D'

But we just said that we should use an MVI instead of an MVC to move constants of length one. So

how can we use the MVI and still get the advantages of more meaningful code? The answer is by

using the EQU instruction.

The EQU, or Equate, verb allows you to assign a name to an immediate value. You can then use

that name as the second operand of an MVI (and other instructions as we will see later). To use an

EQU with the above examples, we would code:

 MVI RACE,HISPANIC where... HISPANIC EQU C'1'

 MVI STATUS,DIVORCED DIVORCED EQU C'D'

Note that there can be no length operator on the EQU definition (that is, we use C'1' instead of

CL1'1').

Equated values cannot be used as operands for an MVC.

For example, the following will not work:

 MVC RACE,HISPANIC where... HISPANIC EQU C'1'

 MVC STATUS,DIVORCED DIVORCED EQU C'D'

* * * * * * * * * * * * * * * * * * * *

CHAPTER 2 2.17

DEFINING AND MOVING CHARACTER DATA

__

__

Copyright © 2009 by Bill Qualls – All Rights Reserved

You Try It...

Replace the MVI with MVC in each of the following:

12. MVI TYPE,C'A' where TYPE DC CL1' '

13. MVI EOFSW,TRUE where EOFSW DC CL1' '

 TRUE EQU C'1'

 FALSE EQU C'0'

14. MVI ERRSW,FOUND where ERRSW DC CL1' '

 FOUND EQU C'*'

Given SWITCH DC CL1' ' replace the following MVCs with MVIs:

 MVC SWITCH,=CL1' ' Turn switch off

 MVC SWITCH,=CL1'X' Turn switch on

15. ...without EQUs

16. ...with EQUs

* * * * * * * * * * * * * * * * * * * *

Our earlier program, MOVE2C.MLC has been changed to use an equated value and includes:

 MVI OHYPHEN,HYPHEN where... HYPHEN EQU C'-'

The new program, MOVE2D.MLC , follows:

 PRINT NOGEN

**

* FILENAME: MOVE2D.MLC *

* AUTHOR : Bill Qualls *

* SYSTEM : PC/370 R4.2 *

* REMARKS : Demonstrate character moves. *

**

 START 0

BEGIN BEGIN

 WTO IPHONE

 MVC OPFX,IPFX

 MVI OHYPHEN,HYPHEN

 MVC OLINE,ILINE

 WTO OPHONE

 RETURN

*

* Literals if any will go here

*

 LTORG

*

* Other field definitions

*

HYPHEN EQU C'-'

*

(continued)

CHAPTER 2 2.18

DEFINING AND MOVING CHARACTER DATA

__

__

Copyright © 2009 by Bill Qualls – All Rights Reserved

IPHONE DS 0CL7

IPFX DC CL3'555'

ILINE DC CL4'1212'

*

OPHONE DS 0CL8

OPFX DS CL3

OHYPHEN DS CL1

OLINE DS CL4

 END BEGIN

__

A:\MIN>move2d

5551212

555-1212

If we examine the .PRN file and compare it to the .PRN files produced by MOVE2C.MLC we can see

that:

 The new MVI instruction, using the equated value, created exactly the same object code as the

earlier MVI instruction; that is, 9260D0A2.

 The hexadecimal equivalent of a hyphen ('60') is shown to the left of the EQU statement. This

is the same '60' as appears in the instruction.

Taken from MOVE2D.PRN

 00007C D202D09FD098 00AF 00A8 29 MVC OPFX,IPFX

 000082 9260D0A2 00B2 30 MVI OHYPHEN,HYPHEN

 000086 D203D0A3D09B 00B3 00AB 31 MVC OLINE,ILINE

 0000A8 42 *

 0000A8 43 * Literals if any will go here

 0000A8 44 *

 0000A8 45 LTORG

 0000A8 46 *

 0000A8 47 * Other field definitions

 0000A8 48 *

 0000A8 00000060 49 HYPHEN EQU C'-'

 0000A8 50 *

 0000A8 51 IPHONE DS 0CL7

 0000A8 F5F5F5 52 IPFX DC CL3'555'

 0000AB F1F2F1F2 53 ILINE DC CL4'1212'

 0000AF 54 *

 0000AF 55 OPHONE DS 0CL8

 0000AF 56 OPFX DS CL3

 0000B2 57 OHYPHEN DS CL1

 0000B3 58 OLINE DS CL4

 000000 59 END BEGIN

* * * * * * * * * * * * * * * * * * * *

CHAPTER 2 2.19

DEFINING AND MOVING CHARACTER DATA

__

__

Copyright © 2009 by Bill Qualls – All Rights Reserved

Explicit Length and Displacement

Recall that the length of an MVC instruction is determined by the length of the receiving field.

We've already looked at what can happen if the sending and receiving fields are of different

lengths. Consequently, we have been careful to define our receiving fields (on report output) to be

the same length as the sending fields. But this may not always be possible. For example, you may

have a program which has two input files (call them A and B) and one output file (call it C). The

name field (containing first and last name) is defined as 25 bytes on files A and C, but as 20 bytes

on file B. Sometimes C will get the name from A, while other times it will get the name from B.

Moving the name from A to C is easy (MVC CNAME,ANAME), but such is not the case for moving the

name from B to C. We cannot use MVC CNAME,BNAME because since the name on C is five bytes

longer than the name on B, the five bytes immediately following the name in B will be moved as

well. What we need is some way to override the length of the move. There is a simple way.

On any MVC, we can state an explicit length. This length overrides the default length which is the

length of the receiving field. For example MVC CNAME(20),BNAME will move twenty bytes only. The

problem with this is that bytes 21 through 25 of CNAME will remain unchanged; that is, if the field

(or record) has not been cleared, data from ANAME may be leftover in those bytes. One way to

avoid this is to clear the field (or record) before any moving is done. For example MVC

CNAME,=CL25'b'

In all of our examples, we have assumed that the data we will move is to be placed in the first byte

of the field. That is to say that there is a default displacement, or skip, of zero. This is usually, but

not always, the case. Just as we can give an explicit length, we can also give an explicit

displacement. By doing so, I will not need to clear the entire field (or record) as shown above.

For example, if I am moving the name from file A, I can code:

 MVC CNAME,ANAME

as before, but if I am moving the name from file B, I will code

 MVC CNAME(20),BNAME

 MVC CNAME+20(5),=CL5'b '

What if the street address field is defined as 30 bytes on files A and C, but as 28 bytes on file B?

Again, sometimes C will get the address from A, while other times it will get the address from B.

As before, if I am moving the address from file A, I can code:

 MVC CSTREET,ASTREET

but if I am moving the address from file B, I will code

CHAPTER 2 2.20

DEFINING AND MOVING CHARACTER DATA

__

__

Copyright © 2009 by Bill Qualls – All Rights Reserved

 MVC CSTREET(28),BSTREET

 MVC CSTREET+28(2),=CL2'b '

The excessive use of literals can make larger programs more difficult to maintain. Rather than

have many literals of the type =CL5'b' and =CL2'b', etc., it is probably better to define a single

field called BLANKS or SPACES, of sufficient length, and to be used instead of these literals. For

example, I might code:

 BLANKS DC CL30'b '

and then code

 MVC CNAME,BLANKS

 MVC CSTREET,BLANKS

or (when moving data from file B)

 MVC CNAME(20),BNAME

 MVC CNAME+20(5),BLANKS

 MVC CSTREET(28),BSTREET

 MVC CSTREET+28(2),BLANKS

Note that an explicit displacement can be used with MVI as well. However, an explicit length

cannot be used with MVI, even if the stated length is 1! For example, to move an asterisk to the

third byte of JUNK, I can code:

 MVC JUNK+2(1),=CL1'*'

 MVI JUNK+2,C'*'

 MVI JUNK+2,STAR (where STAR EQU C'*')

but I cannot code:

 MVI JUNK+2(1),C'*'

Reminder: equated values cannot be used as operands for an MVC, and therefore the following will

not work:

 MVC JUNK+2(1),STAR

When using MVC, explicit displacement can be used on both the sending and

receiving fields, but explicit length can be used on the receiving field only.

When using MVI, explicit displacement can be used on both the sending and

receiving fields, but explicit length cannot be used at all.

CHAPTER 2 2.21

DEFINING AND MOVING CHARACTER DATA

__

__

Copyright © 2009 by Bill Qualls – All Rights Reserved

This method of moving, with explicit displacement and length is sometimes abused. Some

programmers will write whole programs using this method, so as to avoid the time and effort

needed to code the record layout. But this is a dangerous practice, as it is very difficult to debug.

If that were the only negative, it wouldn't be so bad, because the programmer is only hurting

himself or herself. But these programs then get passed onto other programmers who must

maintain them. Use explicit displacement and length sparingly. Its use may be appropriate when

referring to a part of a field, but rarely would it be appropriate when referring to a part of a

record.

The following program, TEACH2B.MLC , is functionally equivalent to program TEACH2A.MLC shown

earlier, but uses explicit displacement and length only. Which would you rather maintain?

 PRINT NOGEN

**

* FILENAME: TEACH2B.MLC *

* AUTHOR : Bill Qualls *

* SYSTEM : PC/370 R4.2 *

* REMARKS : Don't do it this way!!! *

**

 START 0

 REGS

BEGIN BEGIN

 WTO 'TEACH2B ... Begin execution'

 OI TEACHERS+10,X'08' PC/370 ONLY - Convert all

* input from ASCII to EBCDIC

 OI REPORT+10,X'08' PC/370 ONLY - Convert all

* output from EBCDIC to ASCII

 OPEN TEACHERS

 OPEN REPORT

LOOP GET TEACHERS,IREC

 MVC OREC(3),IREC

 MVC OREC+6(15),IREC+3

 MVC OREC+24(4),IREC+18

 MVC OREC+31(1),IREC+22

 MVC OREC+35(4),IREC+23

 MVC OREC+60(2),=X'0D25'

 PUT REPORT,OREC Write report line

 B LOOP

*

* EOJ processing

*

ATEND CLOSE TEACHERS

 CLOSE REPORT

 WTO 'TEACH2B ... Teacher list on REPORT.TXT'

 WTO 'TEACH2B ... Normal end of program'

 RETURN

*

* Literals, if any, will go here

*

 LTORG

*

* File definitions

(continued)

CHAPTER 2 2.22

DEFINING AND MOVING CHARACTER DATA

__

__

Copyright © 2009 by Bill Qualls – All Rights Reserved

*

TEACHERS DCB LRECL=29,RECFM=F,MACRF=G,EODAD=ATEND,

 DDNAME='TEACHER.DAT'

REPORT DCB LRECL=62,RECFM=F,MACRF=P,

 DDNAME='REPORT.TXT'

*

* Field definitions

*

IREC DS CL29 Teacher record

OREC DC CL62' ' Report line

 END BEGIN

* * * * * * * * * * * * * * * * * * * *

Example #2 - A social security number stored as XXXXXXXXX is to be printed as XXX-XX-XXXX .

This example is similar to Example #1 above and is left as an exercise.

* * * * * * * * * * * * * * * * * * * *

Example #3 - A date stored as YYMMDD is to be printed as MM/DD/19YY.

 Defining all fields, and using MVCs only, without literals.

 MVC OMM,IMM

 MVC OSLASH1,SLASH

 MVC ODD,IDD

 MVC OSLASH2,SLASH

 MVC O19,NINETEEN

 MVC OYY,IYY

 where

 IDATE DS 0CL6

 IYY DS CL2

 IMM DS CL2

 IDD DS CL2

 ODATE DS 0CL10

 OMM DS CL2

 OSLASH1 DS CL1

 ODD DS CL2

 OSLASH2 DS CL1

 O19 DS CL2

 OYY DS CL2

 SLASH DC CL1'/'

 NINETEEN DC CL2'19'

 Defining all fields, but using MVCs and MVIs with literals.

 MVC OMM,IMM

 MVI OSLASH1,C'/'

 MVC ODD,IDD

 MVI OSLASH2,C'/'

 MVC O19,=CL2'19'

 MVC OYY,IYY

 where all fields are defined as before.

CHAPTER 2 2.23

DEFINING AND MOVING CHARACTER DATA

__

__

Copyright © 2009 by Bill Qualls – All Rights Reserved

 Using explicit displacement and length only, and using equated values.

 MVC ODATE(2),IDATE+2

 MVI ODATE+2,SLASH

 MVC ODATE+3(2),IDATE+4

 MVI ODATE+5,SLASH

 MVC ODATE+6(2),=CL2'19'

 MVC ODATE+8(2),IDATE

 where

 IDATE DS CL6

 ODATE DS CL10

 SLASH EQU C'/'

You Try It...

Given A DC CL8' ' and B DC CL6' ' . The field A contains a date stored in MM-DD-YY format. Move

A to B such that B contains that date in YYMMDD format...

17. ...defining all fields and using MVCs only.

18. ...using explicit length and displacement only.

19. Repeat You Try It exercise 11 using explicit length and displacement only.

Adding Report and Column Headings

The earlier list of the records in the TEACHER file was referred to as a "quick and dirty" list: we

said that by "quick-and-dirty" we mean a report without headings, page numbers, etc. Our

purpose here is to add report and column headings to the list of teachers.

We will not do page numbers at this time. Page numbers may seem like an easy thing to you if you

already know some other language, but such is not the case in assembler. They do, after all,

require arithmetic (i.e., add 1 to page counter) and printing the results of arithmetic is not a trivial

thing in BAL. Our new listing will appear as follows:

 1 2 3 4 5 6

 123456789012345678901234567890123456789012345678901234567890

 LIST OF TEACHERS

 ID# Name Degr Ten Phone

 --- --------------- ---- --- -----

 XXX XXXXXXXXXXXXXXX XXXX X XXXX

 XXX XXXXXXXXXXXXXXX XXXX X XXXX

 XXX XXXXXXXXXXXXXXX XXXX X XXXX

We will use DS and DC to define the headings. Note:

 There are four heading lines (the second is all blanks),

 Each must be defined as 62 bytes since LRECL=62, and

 Each heading line must end with CR/LF (PC/370 only).

CHAPTER 2 2.24

DEFINING AND MOVING CHARACTER DATA

__

__

Copyright © 2009 by Bill Qualls – All Rights Reserved

There are many ways to format headings. The choice is simply a matter of personal preference. I

will show several of the more common methods, as well as the method I prefer. I will focus on the

third heading line: the techniques used will apply to the other headings as well. I usually label my

headings as HD1, HD2, etc. One technique for defining the above (third) heading is as follows:

HD3 DS 0CL62

 DC CL3'ID#' 3

 DC CL8' ' 8

 DC CL4'Name' 4

 DC CL9' ' 9

 DC CL4'Degr' 4

 DC CL2' ' 2

 DC CL3'Ten' 3

 DC CL2' ' 2

 DC CL5'Phone' 5

 DC CL20' ' 20

 DC XL2'0D25' 2

 62

Note:

 More than one DC is used to define the heading, so HD3 is a DS (not DC) with a multiplier of

zero,

 The sum of the field lengths is 62, and

 Positions 61-62 of the heading are defined as a CR/LF.

I will occasionally use the above method, but when I do, I prefer to include the print positions as

comments. This improves the maintainability of the program.

HD3 DS 0CL62

 DC CL3'ID#' 1- 3 3

 DC CL8' ' 4-11 8

 DC CL4'Name' 12-15 4

 DC CL9' ' 16-24 9

 DC CL4'Degr' 25-28 4

 DC CL2' ' 29-30 2

 DC CL3'Ten' 31-33 3

 DC CL2' ' 34-35 2

 DC CL5'Phone' 36-40 5

 DC CL20' ' 41-60 20

 DC XL2'0D25' 61-62 2

 62

Even though the spacing between columns is more than one byte wide, a single blank was used as

the value for each of those DCs. This is because, as we said earlier, when defining character data

(DC, with type C), the field will be padded with blanks; that is, the following are equivalent:

DC CL8'bbbbbbbb ' is equivalent to DC CL8'b'

CHAPTER 2 2.25

DEFINING AND MOVING CHARACTER DATA

__

__

Copyright © 2009 by Bill Qualls – All Rights Reserved

Many programmers will take this one step further, realizing that since this is the case, one could

include that length in the length of the preceding field, thereby omitting the blank DCs entirely:

HD3 DS 0CL62

 DC CL11'ID#' 1-11 11

 DC CL13'Name' 12-24 13

 DC CL6'Degr' 25-30 6

 DC CL5'Ten' 31-35 5

 DC CL25'Phone' 36-60 25

 DC XL2'0D25' 61-62 2

 62

I prefer to break down my headings into blocks of 40 characters. This size will easily fit on a

single line, and since most print layout charts have grid lines every 10 characters, it is a simple

task to transcribe the headings from the print layout chart to actual assembler code. For example:

HD3 DS 0CL62

 DC CL40'ID# Name Degr Ten Phone'

 DC CL20' '

 DC XL2'0D25'

The benefit of this technique is more apparent when there are multiple heading lines, each over 80

characters wide. (Most mainframe reports are designed to be 132 characters wide, exclusive of

the carriage control character. This is discussed in the appendix.)

The complete headings definitions are as follows:

*

* Headings definitions

*

HD1 DS 0CL62

 DC CL40' LIST OF TEACHERS '

 DC CL20' '

 DC XL2'0D25'

HD2 DS 0CL62

 DC CL60' '

 DC XL2'0D25'

HD3 DS 0CL62

 DC CL40'ID# Name Degr Ten Phone'

 DC CL20' '

 DC XL2'0D25'

HD4 DS 0CL62

 DC CL40'--- --------------- ---- --- -----'

 DC CL20' '

 DC XL2'0D25'

After the output file (REPORT) is opened, and before any records are read, each of the heading lines

is written. The PUT command is used for this purpose. The new program is TEACH2C.MLC : the

program and its output follow:

CHAPTER 2 2.26

DEFINING AND MOVING CHARACTER DATA

__

__

Copyright © 2009 by Bill Qualls – All Rights Reserved

 PRINT NOGEN

**

* FILENAME: TEACH2C.MLC *

* AUTHOR : Bill Qualls *

* SYSTEM : PC/370 R4.2 *

* REMARKS : List of teachers, with headings. *

**

 START 0

 REGS

BEGIN BEGIN

 WTO 'TEACH2C ... Begin execution'

 OI TEACHERS+10,X'08' PC/370 ONLY - Convert all

* input from ASCII to EBCDIC

 OI REPORT+10,X'08' PC/370 ONLY - Convert all

* output from EBCDIC to ASCII

 OPEN TEACHERS

 OPEN REPORT

 PUT REPORT,HD1

 PUT REPORT,HD2

 PUT REPORT,HD3

 PUT REPORT,HD4

LOOP GET TEACHERS,IREC Read a single teacher record

 MVC OTID,ITID Move teacher ID Nbr to output

 MVC OTNAME,ITNAME Move teacher Name to output

 MVC OTDEG,ITDEG Move highest degree to output

 MVC OTTEN,ITTEN Move tenure to output

 MVC OTPHONE,ITPHONE Move phone nbr to output

 MVC OCRLF,WCRLF PC/370 ONLY - end line w/ CR/LF

 PUT REPORT,OREC Write report line

 B LOOP

*

* EOJ processing

*

ATEND CLOSE TEACHERS

 CLOSE REPORT

 WTO 'TEACH2C ... Teacher list on REPORT.TXT'

 WTO 'TEACH2C ... Normal end of program'

 RETURN

*

* Literals, if any, will go here

*

 LTORG

*

* File definitions

*

TEACHERS DCB LRECL=29,RECFM=F,MACRF=G,EODAD=ATEND,

 DDNAME='TEACHER.DAT'

REPORT DCB LRECL=62,RECFM=F,MACRF=P,

 DDNAME='REPORT.TXT'

*

* Miscellaneous field definitions

*

WCRLF DC X'0D25' PC/370 ONLY - EBCDIC CR/LF

(continued)

CHAPTER 2 2.27

DEFINING AND MOVING CHARACTER DATA

__

__

Copyright © 2009 by Bill Qualls – All Rights Reserved

*

* Input record definition

*

IREC DS 0CL29 Teacher record

ITID DS CL3 Teacher ID nbr

ITNAME DS CL15 Teacher name

ITDEG DS CL4 Highest degree

ITTEN DS CL1 Tenured?

ITPHONE DS CL4 Phone nbr

ITCRLF DS CL2 PC/370 only - CR/LF

*

* Output (line) definition

*

OREC DS 0CL62

OTID DS CL3 Teacher ID nbr

 DC CL3' '

OTNAME DS CL15 Teacher name

 DC CL3' '

OTDEG DS CL4 Highest degree

 DC CL3' '

OTTEN DS CL1 Tenured?

 DC CL3' '

OTPHONE DS CL4 Phone nbr

 DC CL21' '

OCRLF DS CL2 PC/370 only - CR/LF

*

* Headings definitions

*

HD1 DS 0CL62

 DC CL40' LIST OF TEACHERS '

 DC CL20' '

 DC XL2'0D25'

HD2 DS 0CL62

 DC CL60' '

 DC XL2'0D25'

HD3 DS 0CL62

 DC CL40'ID# Name Degr Ten Phone'

 DC CL20' '

 DC XL2'0D25'

HD4 DS 0CL62

 DC CL40'--- --------------- ---- --- -----'

 DC CL20' '

 DC XL2'0D25'

 END BEGIN

__

A:\MIN>teach2c

TEACH2C ... Begin execution

TEACH2C ... Teacher list on REPORT.TXT

TEACH2C ... Normal end of program

A:\MIN>type report.txt

 LIST OF TEACHERS

ID# Name Degr Ten Phone

--- --------------- ---- --- -----

732 BENSON, E.T. PHD N 5156

218 HINCKLEY, G.B. MBA N 5509

854 KIMBALL, S.W. PHD Y 5594

626 YOUNG, B. MBA Y 5664

574 SMITH, J. MS Y 5320

CHAPTER 2 2.28

DEFINING AND MOVING CHARACTER DATA

__

__

Copyright © 2009 by Bill Qualls – All Rights Reserved

Exercises

1. True or false.

T F a. The instruction MVC FLDA,FLDB will move (copy) FLDA to FLDB.

T F b. The number of characters moved with a single MVC is determined by the length

of the sending field unless overridden.

T F c. A maximum of 256 characters can be moved with a single MVC.

T F d. When using an MVC, if the receiving field is shorter than the sending field, the

rightmost characters are truncated (not moved).

T F e. When using an MVC, if the receiving field is longer than the sending field, the

extra (rightmost) bytes of the receiving field are padded with blanks.

T F f. DOLLARS DC 5CL4'$$$' will allocate a total of 15 bytes.

T F g. The MVC and MVI instructions occupy the same amount of memory when each is

moving a one byte field.

T F h. Explicit displacement can be used with MVC and MVI.

T F i. Explicit length can be specified on an MVI only if that length is one.

T F j. The use of equated values can make MVIs more readable.

T F k. Given SEVEN DC CL1'7' , an MVI should be used instead of an MVC to move SEVEN

to another one-byte field.

T F l. The following are equivalent: X DC CL5'ABC' and X DC CL5'ABCbb'

T F m. All DSs and DCs require field names (labels).

2. Given the following adjacent field definitions, determine the result for each of the

following instructions. Start with new data for each question.

A DC CL5'JKLMN'

B DC CL4'PQR '

C DC CL3'ST'

X DC CL1'W'

Y EQU C'Z'

(a) MVC B,A B will be:

(b) MVC A,B A will be:

(c) MVC B,C B will be:

(d) MVC A+2(2),C A will be:

(e) MVC A+3(2),B+3 A will be:

(f) MVC C(1),X C will be:

(g) MVC C(1),=C'X' C will be:

(h) MVI B+2,C'Y' B will be:

(i) MVI B+2,Y B will be:

CHAPTER 2 2.29

DEFINING AND MOVING CHARACTER DATA

__

__

Copyright © 2009 by Bill Qualls – All Rights Reserved

Exercises

3. Show how equates might be used to make the following statements more meaningful:

 a. MVI SEX,C'M' b. MVI DAYOFWK,C'1' Sunday

 MVI SEX,C'F' MVI DAYOFWK,C'2' Monday

 :

 MVI DAYOFWK,C'7' Saturday

4. Using the examples given in this chapter (MOVE2A.MLC , MOVE2B.MLC , MOVE2C.MLC , and

MOVE2D.MLC), write and execute four BAL programs to demonstrate the different methods

by which you could complete the moves described in Example #2: A social security

number stored as XXXXXXXXX is to be printed as XXX-XX-XXXX . Look at the resulting .PRN

files. Discuss the differences and similarities in terms of ease of coding, execution time,

memory usage, and maintainability.

5. In direct marketing (aka junk mail) one common task is the merge/purge. In the

merge/purge, multiple lists (such as mailing lists from different mail order houses and list

brokers) are combined, and duplicates are dropped so as to minimize printing and postage

costs. In order to identify duplicates, a match code is usually generated. There are many

ways of generating a match code. For example, the match code may consist of the zip

code, the first, third, and fourth letters of the last name, and the first (up to six)

consecutive numbers from the street address.

 Thus, given: KATHY BLACK

 618 S ANZA

 PASADENA CA 91106

 The match code would be: 91106BAC000618

 Note the following names would give the same match code: KATHI BLACK , CATHY BLACK , K.

BLACK, and C.J. BLACK.

 Your task is as follows: The input record is 80 bytes long, with the zip code in positions

1-5, the last name in positions 21-32, and the street address in positions 33-62. All other

positions are unused in this example. The match code is 14 bytes long as illustrated above.

You are to code the DS and MVC necessary to move the zip code to positions 1-5 of the

match code, and to move positions 1, 3, and 4 of the last name to positions 6, 7, and 8

(respectively) of the match code. (We will do nothing with the street address in this

example.)

 Challenge - Code the DS and MVC such that the name can be moved with two MVCs.

CHAPTER 2 2.30

DEFINING AND MOVING CHARACTER DATA

__

__

Copyright © 2009 by Bill Qualls – All Rights Reserved

Exercises

6. Produce a formatted list of the records in the student file. Each line should be 33 bytes

long, exclusive of the CR/LF. The report should include report and column headings. The

desired format is as follows:

 1 2 3

123456789012345678901234567890123

 STUDENT MASTER LIST

ID# Student Name Sex Mar

--- --------------- --- ---

XXX XXXXXXXXXXXXXXX X X

XXX XXXXXXXXXXXXXXX X X

XXX XXXXXXXXXXXXXXX X X

7. Produce a formatted list of the records in the GRADE file. Show the semester, course ID,

student ID, and grade earned only, in that order. Each line should be 50 bytes long,

exclusive of the CR/LF. The report should include report and column headings. The desired

format is as follows:

 1 2 3 4 5

12345678901234567890123456789012345678901234567890

 GRADE MASTER LIST

 (Confidential)

 Course Student

 Sem Number ID# Grade

 --- ------ ------- -----

 XXX XXXXX XXX X

 XXX XXXXX XXX X

 XXX XXXXX XXX X

8. Produce a formatted list of the records in the course file. Show the course ID and course

description only. Show the course number as the department (first two positions of the

course ID) and the course number (third, fourth, and fifth positions of the course ID) are

separated by a single space. Each line should be 30 bytes long, exclusive of the CR/LF. The

report should include report and column headings. The desired format is as follows:

 1 2 3

123456789012345678901234567890

 COURSE MASTER LIST

 Course Description

 ------ ---------------

 XX XXX XXXXXXXXXXXXXXX

 XX XXX XXXXXXXXXXXXXXX

 XX XXX XXXXXXXXXXXXXXX

CHAPTER 2 2.31

DEFINING AND MOVING CHARACTER DATA

__

__

Copyright © 2009 by Bill Qualls – All Rights Reserved

Exercises

9. The following program makes (excessive) use of explicit length and displacement to

produce a list of selected fields from the course offerings file. Run the program as is to

determine the output. Then make the necessary changes to clean up the code while still

producing the same results. Your solution should not use explicit length and

displacement at all!

 PRINT NOGEN

**

* FILENAME: OFFER2A.MLC *

* AUTHOR : *

* SYSTEM : PC/370 R4.2 *

* REMARKS : A quick-and-dirty list of offerings. *

**

 START 0

 REGS

BEGIN BEGIN

 OI OFFER+10,X'08'

 OI REPORT+10,X'08'

 OPEN OFFER

 OPEN REPORT

LOOP GET OFFER,IREC

 MVC OREC(2),IREC+3

 MVI OREC+2,C'-'

 MVC OREC+3(3),IREC+5

 MVI OREC+6,C'-'

 MVC OREC+7(1),IREC+8

 MVC OREC+11(1),IREC

 MVC OREC+12(3),=C'*19'

 MVC OREC+15(2),IREC+1

 MVC OREC+20(4),IREC+12

 MVC OREC+27(3),IREC+9

 MVC OREC+31(2),=C'**'

 MVC OREC+33(2),=X'0D25'

 PUT REPORT,OREC

 B LOOP

ATEND CLOSE OFFER

 CLOSE REPORT

 RETURN

 LTORG

OFFER DCB LRECL=18,RECFM=F,MACRF=G,EODAD=ATEND,

 DDNAME='OFFER.DAT'

REPORT DCB LRECL=35,RECFM=F,MACRF=P,

 DDNAME='OFFER.TXT'

IREC DS CL18

OREC DC CL35' '

 END BEGIN

